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Comparison-based sorting: Quicksort, Heapsort, Mergesort

210 215 220 225

number of elements n

5

10

15

20

25

ti
m

e
p

er
n

lo
g
n

[n
s]

std::sort (Quicksort/Introsort)

std::partial sort (Heapsort)

std::stable sort (Mergesort)

210 215 220 225

number of elements n

5

10

15

20

25

ti
m

e
p

er
n

lo
g
n

[n
s]

Running times (divided by n log n) for sorting integers.
Left: random inputs.
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Quicksort, Heapsort, Mergesort

Algorithm Fast on average “in place” O(n log n) worst case

Quicksort 3 3 7

Heapsort 7 3 3

Mergesort 3 7 3

Wish to have three times 3:

Make Quicksort worst-case efficient: Introsort, median-of-medians
pivot selection

Make Heapsort fast: Bottom-up Heapsort (not very fast)

Make Mergesort in-place:

block based merging (stable implementations: Grailsort, Wikisort)
rotation based merging (stable, but O(n log2 n))
use one half as buffer to sort the other half
(In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012], unstable)
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Quicksort

1: procedure Quicksort(A[`, . . . , r ])
2: if r > ` then
3: pivot ← choosePivot(A[`, . . . , r ])
4: cut ← partition(A[`, . . . , r ], pivot)
5: Quicksort(A[`, . . . , cut− 1])
6: Quicksort(A[cut, . . . , r ])
7: end if
8: end procedure

After line 4:

≥ pivot
≤ pivot

After line 5:

After line 6: both parts sorted recursively with Quicksort
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QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.
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Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs ≤ n log n − 0.83n (resp. n log n − 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of

√
n).

Still quadratic worst-case (with median-of-three)!

Solution: choose the median as pivot:

Quickselect resp. Introselect.

Problem: worst case

 In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

Median-of-medians algorithm [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem (Folklore)

The median-of-medians algorithms needs at most 20n + o(n)
comparisons to find the median of n elements.

Need to find the median of n, n
2 , n

4 , . . . elements  40n comparisons
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Median-of-medians QuickMergesort

Key observation: we do not need the exact median.

Sufficient if one third is smaller/greater than the pivot:

form groups of 3 elements

compute the median of each group

compute the median of the n/3 medians

· · ·

M1 M2 M3 . . . Mk

M

One third are ≤ p: p

Theorem

Basic MoMQuickMergesort needs at most n log n + 13.8n + o(n)
comparisons.
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Merging with less buffer space (Reinhardt 1992)

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Expected result:

Need a guarantee that one fifth are smaller/greater than the pivot:

· · ·

M1 M2 M3 M4 M5 M6 . . . Mk

M′
1 M′

2 M′
`

. . .

M
 median of pseudomedians of 15 elements

Theorem

MoMQuickMergesort needs at most n log n + 4.57n + o(n) comparisons.
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Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Result:

 trade-off: effort to find good pivots vs. increased merging costs

Undersampling: for θ ≥ 1 apply the median-of-pseudomedians-of-15
strategy to n/θ elements.

Theorem

MoMQuickMergesort with undersampling factor θ = 2.2 needs at most
n log n + 1.59n + o(n) comparisons.
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Experiments

Experiments with random permutations of 32-bit integers (other
data types in proceedings) in C++.

Not clear how to find worst-case instances.

Simulation of worst cases:

Discard the computed pivots and compute worst-case pivots using
Quickselect.
Minor details (e. g. random shuffle before Mergesort).
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Counting comparisons

Algorithm
average case worst case

exp. theo. exp. theo.

bMQMS 2.772 ± 0.02

– 13.05 ± 0.17 13.8

MQMS 2.084 ± 0.001

2.094 4.220 ± 0.007 4.57

MQMS11/5 0.246 ± 0.01

0.275 1.218 ± 0.011 1.59
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and simulated worst cases.
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Running times
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Conclusion

Algorithm Fast on average “in place” O(n log n) worst case

Quicksort 3 3 7

Heapsort 7 3 3

Mergesort 3 7 3

MoMQuickMergesort 3 3 3

MQMS11/5 is an unstable sorting algorithm with

n log n + 1.59n + o(n) comparisons in the worst case
n log n + 0.275n + o(n) comparisons in the average case

Implementation with stl-style interface1.

Thank you!

1Code available at https://github.com/weissan/QuickXsort

https://github.com/weissan/QuickXsort
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Experiments with larger records
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Experiments sorting pointers
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Experimental setup

Experiments with random permutations of 32bit integers (other data
types in proceedings).

running time and comparison count

≥ 100 measurements for each data point

Test environment:

Intel Core i5-2500K CPU (3.30GHz) with 16GB RAM
Ubuntu Linux 64bit version 14.04.4
g++ (4.8.4) compiler with flags -O3 -march=native


