
Worst-Case Efficient Sorting with QuickMergesort

Stefan Edelkamp1 and Armin Weiß2

1King’s College London, UK

2FMI, Universität Stuttgart, Germany

San Diego, January 7, 2019

Comparison-based sorting: Quicksort, Heapsort, Mergesort

210 215 220 225

number of elements n

5

10

15

20

25

ti
m

e
p

er
n

lo
g
n

[n
s]

std::sort (Quicksort/Introsort)

std::partial sort (Heapsort)

std::stable sort (Mergesort)

210 215 220 225

number of elements n

5

10

15

20

25

ti
m

e
p

er
n

lo
g
n

[n
s]

Running times (divided by n log n) for sorting integers.
Left: random inputs.

Right: random with large elements in the middle and end.

Comparison-based sorting: Quicksort, Heapsort, Mergesort

210 215 220 225

number of elements n

5

10

15

20

25

ti
m

e
p

er
n

lo
g
n

[n
s]

std::sort (Quicksort/Introsort)

std::partial sort (Heapsort)

std::stable sort (Mergesort)

210 215 220 225

number of elements n

5

10

15

20

25

ti
m

e
p

er
n

lo
g
n

[n
s]

Running times (divided by n log n) for sorting integers.
Left: random inputs.

Right: random with large elements in the middle and end.

Comparison-based sorting: Quicksort, Heapsort, Mergesort

210 215 220 225

number of elements n

5

10

15

20

25

ti
m

e
p

er
n

lo
g
n

[n
s]

std::sort (Quicksort/Introsort)

std::partial sort (Heapsort)

std::stable sort (Mergesort)

210 215 220 225

number of elements n

5

10

15

20

25

ti
m

e
p

er
n

lo
g
n

[n
s]

Running times (divided by n log n) for sorting integers.
Left: random inputs.
Right: random with large elements in the middle and end.

Quicksort, Heapsort, Mergesort

Algorithm Fast on average “in place” O(n log n) worst case

Quicksort 3 3 7

Heapsort 7 3 3

Mergesort 3 7 3

Wish to have three times 3:

Make Quicksort worst-case efficient: Introsort, median-of-medians
pivot selection

Make Heapsort fast: Bottom-up Heapsort (not very fast)

Make Mergesort in-place:

block based merging (stable implementations: Grailsort, Wikisort)
rotation based merging (stable, but O(n log2 n))
use one half as buffer to sort the other half
(In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012], unstable)

Quicksort, Heapsort, Mergesort

Algorithm Fast on average “in place” O(n log n) worst case

Quicksort 3 3 7

Heapsort 7 3 3

Mergesort 3 7 3

Wish to have three times 3:

Make Quicksort worst-case efficient: Introsort, median-of-medians
pivot selection

Make Heapsort fast: Bottom-up Heapsort (not very fast)

Make Mergesort in-place:

block based merging (stable implementations: Grailsort, Wikisort)
rotation based merging (stable, but O(n log2 n))
use one half as buffer to sort the other half
(In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012], unstable)

Quicksort, Heapsort, Mergesort

Algorithm Fast on average “in place” O(n log n) worst case

Quicksort 3 3 7

Heapsort 7 3 3

Mergesort 3 7 3

Wish to have three times 3:

Make Quicksort worst-case efficient: Introsort, median-of-medians
pivot selection

Make Heapsort fast: Bottom-up Heapsort (not very fast)

Make Mergesort in-place:

block based merging (stable implementations: Grailsort, Wikisort)
rotation based merging (stable, but O(n log2 n))
use one half as buffer to sort the other half
(In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012], unstable)

Quicksort, Heapsort, Mergesort

Algorithm Fast on average “in place” O(n log n) worst case

Quicksort 3 3 7

Heapsort 7 3 3

Mergesort 3 7 3

Wish to have three times 3:

Make Quicksort worst-case efficient: Introsort, median-of-medians
pivot selection

Make Heapsort fast: Bottom-up Heapsort (not very fast)

Make Mergesort in-place:

block based merging (stable implementations: Grailsort, Wikisort)
rotation based merging (stable, but O(n log2 n))
use one half as buffer to sort the other half
(In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012], unstable)

Quicksort, Heapsort, Mergesort

Algorithm Fast on average “in place” O(n log n) worst case

Quicksort 3 3 7

Heapsort 7 3 3

Mergesort 3 7 3

Wish to have three times 3:

Make Quicksort worst-case efficient: Introsort, median-of-medians
pivot selection

Make Heapsort fast: Bottom-up Heapsort (not very fast)

Make Mergesort in-place:

block based merging (stable implementations: Grailsort, Wikisort)

rotation based merging (stable, but O(n log2 n))
use one half as buffer to sort the other half
(In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012], unstable)

Quicksort, Heapsort, Mergesort

Algorithm Fast on average “in place” O(n log n) worst case

Quicksort 3 3 7

Heapsort 7 3 3

Mergesort 3 7 3

Wish to have three times 3:

Make Quicksort worst-case efficient: Introsort, median-of-medians
pivot selection

Make Heapsort fast: Bottom-up Heapsort (not very fast)

Make Mergesort in-place:

block based merging (stable implementations: Grailsort, Wikisort)
rotation based merging (stable, but O(n log2 n))

use one half as buffer to sort the other half
(In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012], unstable)

Quicksort, Heapsort, Mergesort

Algorithm Fast on average “in place” O(n log n) worst case

Quicksort 3 3 7

Heapsort 7 3 3

Mergesort 3 7 3

Wish to have three times 3:

Make Quicksort worst-case efficient: Introsort, median-of-medians
pivot selection

Make Heapsort fast: Bottom-up Heapsort (not very fast)

Make Mergesort in-place:

block based merging (stable implementations: Grailsort, Wikisort)
rotation based merging (stable, but O(n log2 n))
use one half as buffer to sort the other half
(In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012], unstable)

Outline

Outline:

QuickMergesort

Our improvements and theoretical bounds

Experiments

Quicksort

1: procedure Quicksort(A[`, . . . , r])
2: if r > ` then
3: pivot ← choosePivot(A[`, . . . , r])
4: cut ← partition(A[`, . . . , r], pivot)
5: Quicksort(A[`, . . . , cut− 1])
6: Quicksort(A[cut, . . . , r])
7: end if
8: end procedure

After line 4:

≥ pivot
≤ pivot

After line 5:

After line 6: both parts sorted recursively with Quicksort

Quicksort

1: procedure Quicksort(A[`, . . . , r])
2: if r > ` then
3: pivot ← choosePivot(A[`, . . . , r])
4: cut ← partition(A[`, . . . , r], pivot)
5: Quicksort(A[`, . . . , cut− 1])
6: Quicksort(A[cut, . . . , r])
7: end if
8: end procedure

After line 4:

≥ pivot
≤ pivot

After line 5:

After line 6: both parts sorted recursively with Quicksort

Quicksort

1: procedure Quicksort(A[`, . . . , r])
2: if r > ` then
3: pivot ← choosePivot(A[`, . . . , r])
4: cut ← partition(A[`, . . . , r], pivot)
5: Quicksort(A[`, . . . , cut− 1])
6: Quicksort(A[cut, . . . , r])
7: end if
8: end procedure

After line 4:

≥ pivot
≤ pivot

After line 5:

After line 6: both parts sorted recursively with Quicksort

Quicksort

1: procedure Quicksort(A[`, . . . , r])
2: if r > ` then
3: pivot ← choosePivot(A[`, . . . , r])
4: cut ← partition(A[`, . . . , r], pivot)
5: Quicksort(A[`, . . . , cut− 1])
6: Quicksort(A[cut, . . . , r])
7: end if
8: end procedure

After line 4:

≥ pivot
≤ pivot

After line 5:

After line 6: both parts sorted recursively with Quicksort

Quicksort

1: procedure Quicksort(A[`, . . . , r])
2: if r > ` then
3: pivot ← choosePivot(A[`, . . . , r])
4: cut ← partition(A[`, . . . , r], pivot)
5: Quicksort(A[`, . . . , cut− 1])
6: Quicksort(A[cut, . . . , r])
7: end if
8: end procedure

After line 4:

≥ pivot
≤ pivot

After line 5:

After line 6: both parts sorted recursively with Quicksort

QuickMergesort

1: procedure Quicksort(A[`, . . . , r])
2: if r > ` then
3: pivot ← choosePivot(A[`, . . . , r])
4: cut ← partition(A[`, . . . , r], pivot)
5: Quicksort(A[`, . . . , cut− 1])
6: Quicksort(A[cut, . . . , r])
7: end if
8: end procedure

After line 4:

≥ pivot
≤ pivot

After line 5:

After line 6: both parts sorted recursively with QuickMergesort

QuickMergesort

1: procedure Quicksort(A[`, . . . , r])
2: if r > ` then
3: pivot ← choosePivot(A[`, . . . , r])
4: cut ← partition(A[`, . . . , r], pivot)
5: Quicksort

Mergesort
(A[`, . . . , cut− 1])

6: Quicksort(A[cut, . . . , r])
7: end if
8: end procedure

After line 4:

≥ pivot
≤ pivot

After line 5:

After line 6: both parts sorted recursively with QuickMergesort

QuickMergesort

1: procedure QuickMergesort(A[`, . . . , r])
2: if r > ` then
3: pivot ← choosePivot(A[`, . . . , r])
4: cut ← partition(A[`, . . . , r], pivot)
5: Mergesort(A[`, . . . , cut− 1])
6: QuickMergesort(A[cut, . . . , r])
7: end if
8: end procedure

After line 4:

≥ pivot
≤ pivot

After line 5:

After line 6: both parts sorted recursively with QuickMergesort

QuickMergesort

1: procedure QuickMergesort(A[`, . . . , r])
2: if r > ` then
3: pivot ← choosePivot(A[`, . . . , r])
4: cut ← partition(A[`, . . . , r], pivot)
5: Mergesort(A[`, . . . , cut− 1])
6: QuickMergesort(A[cut, . . . , r])
7: end if
8: end procedure

After line 4:

≥ pivot
≤ pivot

After line 5:

After line 6: both parts sorted recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6

︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 60 10 8 11 2 3 4 7 9 1 5 60 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 60 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6

︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 60 10 8 11 2 3 4 7 9 1 5 60 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 60 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6

︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 60 10 8 11 2 3 4 7 9 1 5 60 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 60 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6

︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 60 10 8 11 2 3 4 7 9 1 5 60 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 60 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6

︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 60 10 8 11 2 3 4 7 9 1 5 60 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 60 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6

︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 60 10 8 11 2 3 4 7 9 1 5 60 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 60 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 6

0 10 8 11 2 3 4 7 9 1 5 60 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 60 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 6

0 10 8 11 2 3 4 7 9 1 5 60 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 60 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 6

0 10 8 11 2 3 4 7 9 1 5 6

0 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 60 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 6

0 10 8 11 2 3 4 7 9 1 5 6

0 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 60 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 60 10 8 11 2 3 4 7 9 1 5 6

0 1 8 11 2 3 4 7 9 10 5 6

0 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 60 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 60 10 8 11 2 3 4 7 9 1 5 60 1 8 11 2 3 4 7 9 10 5 6

0 1 2 11 8 3 4 7 9 10 5 6

0 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 60 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 60 10 8 11 2 3 4 7 9 1 5 60 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 6

0 1 2 3 8 11 4 7 9 10 5 6

0 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 60 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 60 10 8 11 2 3 4 7 9 1 5 60 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 6

0 1 2 3 4 11 8 7 9 10 5 6

0 1 2 3 4 5 8 7 9 10 11 60 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 60 10 8 11 2 3 4 7 9 1 5 60 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 6

0 1 2 3 4 5 8 7 9 10 11 6

0 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 60 10 8 11 2 3 4 7 9 1 5 60 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 6

0 1 2 3 4 5 6 7 9 10 11 8

︸ ︷︷ ︸
sort recursively with QuickMergesort

QuickMergesort

1. Partition according to some pivot element.

2. Sort one part with Mergesort.

3. Sort the the other part recursively with QuickMergesort.

11 4 5 6 10 9 2 3 1 0 87

3 2 4 5 6 0 1 9 10 11 87

︸ ︷︷ ︸
sort with Mergesort

︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 11 9 10 8 7 0 1 5 6

sort recursively with Mergesort
︸ ︷︷ ︸

9 10 8 11 2 3 4 7 0 1 5 6︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

9 10 8 11 2 3 4 7 0 1 5 60 10 8 11 2 3 4 7 9 1 5 60 1 8 11 2 3 4 7 9 10 5 60 1 2 11 8 3 4 7 9 10 5 60 1 2 3 8 11 4 7 9 10 5 60 1 2 3 4 11 8 7 9 10 5 60 1 2 3 4 5 8 7 9 10 11 6

0 1 2 3 4 5 6 7 9 10 11 8︸ ︷︷ ︸
sort recursively with QuickMergesort

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs ≤ n log n − 0.83n (resp. n log n − 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of

√
n).

Still quadratic worst-case (with median-of-three)!

Solution: choose the median as pivot:

Quickselect resp. Introselect.

Problem: worst case

 In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

Median-of-medians algorithm [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem (Folklore)

The median-of-medians algorithms needs at most 20n + o(n)
comparisons to find the median of n elements.

Need to find the median of n, n
2 , n

4 , . . . elements 40n comparisons

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs ≤ n log n − 0.83n (resp. n log n − 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of

√
n).

Still quadratic worst-case (with median-of-three)!

Solution: choose the median as pivot:

Quickselect resp. Introselect.

Problem: worst case

 In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

Median-of-medians algorithm [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem (Folklore)

The median-of-medians algorithms needs at most 20n + o(n)
comparisons to find the median of n elements.

Need to find the median of n, n
2 , n

4 , . . . elements 40n comparisons

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs ≤ n log n − 0.83n (resp. n log n − 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of

√
n).

Still quadratic worst-case (with median-of-three)!

Solution: choose the median as pivot:

Quickselect resp. Introselect.

Problem: worst case

 In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

Median-of-medians algorithm [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem (Folklore)

The median-of-medians algorithms needs at most 20n + o(n)
comparisons to find the median of n elements.

Need to find the median of n, n
2 , n

4 , . . . elements 40n comparisons

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs ≤ n log n − 0.83n (resp. n log n − 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of

√
n).

Still quadratic worst-case (with median-of-three)!

Solution: choose the median as pivot:

Quickselect resp. Introselect.

Problem: worst case
 In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

Median-of-medians algorithm [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem (Folklore)

The median-of-medians algorithms needs at most 20n + o(n)
comparisons to find the median of n elements.

Need to find the median of n, n
2 , n

4 , . . . elements 40n comparisons

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs ≤ n log n − 0.83n (resp. n log n − 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of

√
n).

Still quadratic worst-case (with median-of-three)!

Solution: choose the median as pivot:

Quickselect resp. Introselect.

Problem: worst case

 In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

Median-of-medians algorithm [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem (Folklore)

The median-of-medians algorithms needs at most 20n + o(n)
comparisons to find the median of n elements.

Need to find the median of n, n
2 , n

4 , . . . elements 40n comparisons

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs ≤ n log n − 0.83n (resp. n log n − 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of

√
n).

Still quadratic worst-case (with median-of-three)!

Solution: choose the median as pivot:

Quickselect resp. Introselect. Problem: worst case
 In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

Median-of-medians algorithm [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem (Folklore)

The median-of-medians algorithms needs at most 20n + o(n)
comparisons to find the median of n elements.

Need to find the median of n, n
2 , n

4 , . . . elements 40n comparisons

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs ≤ n log n − 0.83n (resp. n log n − 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of

√
n).

Still quadratic worst-case (with median-of-three)!

Solution: choose the median as pivot:

Quickselect resp. Introselect. Problem: worst case
 In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

Median-of-medians algorithm [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem (Folklore)

The median-of-medians algorithms needs at most 20n + o(n)
comparisons to find the median of n elements.

Need to find the median of n, n
2 , n

4 , . . . elements 40n comparisons

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs ≤ n log n − 0.83n (resp. n log n − 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of

√
n).

Still quadratic worst-case (with median-of-three)!

Solution: choose the median as pivot:

Quickselect resp. Introselect. Problem: worst case
 In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

Median-of-medians algorithm [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem (Folklore)

The median-of-medians algorithms needs at most 20n + o(n)
comparisons to find the median of n elements.

Need to find the median of n, n
2 , n

4 , . . . elements 40n comparisons

Worst case of QuickMergesort

Theorem (Edelkamp, W. 2014, Wild 2018)

QuickMergesort needs ≤ n log n − 0.83n (resp. n log n − 1.24n) +o(n)
comparisons on average with median-of-three (resp. median of

√
n).

Still quadratic worst-case (with median-of-three)!

Solution: choose the median as pivot:

Quickselect resp. Introselect. Problem: worst case
 In-situ Mergesort [Elmasry, Katajainen, Stenmark 2012]

Median-of-medians algorithm [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem (Folklore)

The median-of-medians algorithms needs at most 20n + o(n)
comparisons to find the median of n elements.

Need to find the median of n, n
2 , n

4 , . . . elements 40n comparisons

Median-of-medians QuickMergesort

Key observation: we do not need the exact median.

Sufficient if one third is smaller/greater than the pivot:

form groups of 3 elements

compute the median of each group

compute the median of the n/3 medians

· · ·

M1 M2 M3 . . . Mk

M

One third are ≤ p: p

Theorem

Basic MoMQuickMergesort needs at most n log n + 13.8n + o(n)
comparisons.

Median-of-medians QuickMergesort

Key observation: we do not need the exact median.

Sufficient if one third is smaller/greater than the pivot:

form groups of 3 elements

compute the median of each group

compute the median of the n/3 medians

· · ·

M1 M2 M3 . . . Mk

M

One third are ≤ p: p

Theorem

Basic MoMQuickMergesort needs at most n log n + 13.8n + o(n)
comparisons.

Median-of-medians QuickMergesort

Key observation: we do not need the exact median.

Sufficient if one third is smaller/greater than the pivot:

form groups of 3 elements

compute the median of each group

compute the median of the n/3 medians

· · ·

M1 M2 M3 . . . Mk

M

One third are ≤ p: p

Theorem

Basic MoMQuickMergesort needs at most n log n + 13.8n + o(n)
comparisons.

Median-of-medians QuickMergesort

Key observation: we do not need the exact median.

Sufficient if one third is smaller/greater than the pivot:

form groups of 3 elements

compute the median of each group

compute the median of the n/3 medians

· · ·

M1 M2 M3 . . . Mk

M

One third are ≤ p: p

Theorem

Basic MoMQuickMergesort needs at most n log n + 13.8n + o(n)
comparisons.

Median-of-medians QuickMergesort

Key observation: we do not need the exact median.

Sufficient if one third is smaller/greater than the pivot:

form groups of 3 elements

compute the median of each group

compute the median of the n/3 medians

· · ·

M1 M2 M3 . . . Mk

M

One third are ≤ p: p

Theorem

Basic MoMQuickMergesort needs at most n log n + 13.8n + o(n)
comparisons.

Merging with less buffer space (Reinhardt 1992)

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Expected result:

Need a guarantee that one fifth are smaller/greater than the pivot:

· · ·

M1 M2 M3 M4 M5 M6 . . . Mk

M′
1 M′

2 M′
`

. . .

M
 median of pseudomedians of 15 elements

Theorem

MoMQuickMergesort needs at most n log n + 4.57n + o(n) comparisons.

Merging with less buffer space (Reinhardt 1992)

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Expected result:

Need a guarantee that one fifth are smaller/greater than the pivot:

· · ·

M1 M2 M3 M4 M5 M6 . . . Mk

M′
1 M′

2 M′
`

. . .

M
 median of pseudomedians of 15 elements

Theorem

MoMQuickMergesort needs at most n log n + 4.57n + o(n) comparisons.

Merging with less buffer space (Reinhardt 1992)

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Result:

Need a guarantee that one fifth are smaller/greater than the pivot:

· · ·

M1 M2 M3 M4 M5 M6 . . . Mk

M′
1 M′

2 M′
`

. . .

M
 median of pseudomedians of 15 elements

Theorem

MoMQuickMergesort needs at most n log n + 4.57n + o(n) comparisons.

Merging with less buffer space (Reinhardt 1992)

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Result:

Need a guarantee that one fifth are smaller/greater than the pivot:

· · ·

M1 M2 M3 M4 M5 M6 . . . Mk

M′
1 M′

2 M′
`

. . .

M
 median of pseudomedians of 15 elements

Theorem

MoMQuickMergesort needs at most n log n + 4.57n + o(n) comparisons.

Merging with less buffer space (Reinhardt 1992)

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Result:

Need a guarantee that one fifth are smaller/greater than the pivot:

· · ·

M1 M2 M3 M4 M5 M6 . . . Mk

M′
1 M′

2 M′
`

. . .

M
 median of pseudomedians of 15 elements

Theorem

MoMQuickMergesort needs at most n log n + 4.57n + o(n) comparisons.

Merging with less buffer space (Reinhardt 1992)

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Result:

Need a guarantee that one fifth are smaller/greater than the pivot:

· · ·

M1 M2 M3 M4 M5 M6 . . . Mk

M′
1 M′

2 M′
`

. . .

M
 median of pseudomedians of 15 elements

Theorem

MoMQuickMergesort needs at most n log n + 4.57n + o(n) comparisons.

Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Result:

 trade-off: effort to find good pivots vs. increased merging costs

Undersampling: for θ ≥ 1 apply the median-of-pseudomedians-of-15
strategy to n/θ elements.

Theorem

MoMQuickMergesort with undersampling factor θ = 2.2 needs at most
n log n + 1.59n + o(n) comparisons.

Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Result:

 trade-off: effort to find good pivots vs. increased merging costs

Undersampling: for θ ≥ 1 apply the median-of-pseudomedians-of-15
strategy to n/θ elements.

Theorem

MoMQuickMergesort with undersampling factor θ = 2.2 needs at most
n log n + 1.59n + o(n) comparisons.

Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Result:

 trade-off: effort to find good pivots vs. increased merging costs

Undersampling: for θ ≥ 1 apply the median-of-pseudomedians-of-15
strategy to n/θ elements.

Theorem

MoMQuickMergesort with undersampling factor θ = 2.2 needs at most
n log n + 1.59n + o(n) comparisons.

Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Result:

 trade-off: effort to find good pivots vs. increased merging costs

Undersampling: for θ ≥ 1 apply the median-of-pseudomedians-of-15
strategy to n/θ elements.

Theorem

MoMQuickMergesort with undersampling factor θ = 2.2 needs at most
n log n + 1.59n + o(n) comparisons.

Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Result:

 trade-off: effort to find good pivots vs. increased merging costs

Undersampling: for θ ≥ 1 apply the median-of-pseudomedians-of-15
strategy to n/θ elements.

Theorem

MoMQuickMergesort with undersampling factor θ = 2.2 needs at most
n log n + 1.59n + o(n) comparisons.

Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Result:

 trade-off: effort to find good pivots vs. increased merging costs

Undersampling: for θ ≥ 1 apply the median-of-pseudomedians-of-15
strategy to n/θ elements.

Theorem

MoMQuickMergesort with undersampling factor θ = 2.2 needs at most
n log n + 1.59n + o(n) comparisons.

Unbalanced merging and undersampling

For merging sequences of different size a smaller buffer suffices:

Step 1 (merge from the left):

Once the buffer is full, the final position for the largest element is “free”.

Step 2 (merge from the right):

Result:

 trade-off: effort to find good pivots vs. increased merging costs

Undersampling: for θ ≥ 1 apply the median-of-pseudomedians-of-15
strategy to n/θ elements.

Theorem

MoMQuickMergesort with undersampling factor θ = 2.2 needs at most
n log n + 1.59n + o(n) comparisons.

Experiments

Experiments with random permutations of 32-bit integers (other
data types in proceedings) in C++.

Not clear how to find worst-case instances.

Simulation of worst cases:

Discard the computed pivots and compute worst-case pivots using
Quickselect.
Minor details (e. g. random shuffle before Mergesort).

Experiments

Experiments with random permutations of 32-bit integers (other
data types in proceedings) in C++.

Not clear how to find worst-case instances.

Simulation of worst cases:

Discard the computed pivots and compute worst-case pivots using
Quickselect.
Minor details (e. g. random shuffle before Mergesort).

Experiments

Experiments with random permutations of 32-bit integers (other
data types in proceedings) in C++.

Not clear how to find worst-case instances.

Simulation of worst cases:

Discard the computed pivots and compute worst-case pivots using
Quickselect.
Minor details (e. g. random shuffle before Mergesort).

Experiments

Experiments with random permutations of 32-bit integers (other
data types in proceedings) in C++.

Not clear how to find worst-case instances.

Simulation of worst cases:

Discard the computed pivots and compute worst-case pivots using
Quickselect.

Minor details (e. g. random shuffle before Mergesort).

Experiments

Experiments with random permutations of 32-bit integers (other
data types in proceedings) in C++.

Not clear how to find worst-case instances.

Simulation of worst cases:

Discard the computed pivots and compute worst-case pivots using
Quickselect.
Minor details (e. g. random shuffle before Mergesort).

Counting comparisons

Algorithm
average case worst case

exp. theo. exp. theo.

bMQMS 2.772 ± 0.02

– 13.05 ± 0.17 13.8

MQMS 2.084 ± 0.001

2.094 4.220 ± 0.007 4.57

MQMS11/5 0.246 ± 0.01

0.275 1.218 ± 0.011 1.59

210 213 216 219 222 225 228

number of elements n

0

1

2

3

4

(c
om

p
ar

is
on

s−
n

lo
g
n

)/
n bMQMS

MQMS

MQMS11/5

Number of comparisons (linear term) of MoMQuickMergesort variants

and simulated worst cases.

Counting comparisons

Algorithm
average case worst case

exp. theo. exp. theo.

bMQMS 2.772 ± 0.02 –

13.05 ± 0.17 13.8

MQMS 2.084 ± 0.001 2.094

4.220 ± 0.007 4.57

MQMS11/5 0.246 ± 0.01 0.275

1.218 ± 0.011 1.59

210 213 216 219 222 225 228

number of elements n

0

1

2

3

4

(c
om

p
ar

is
on

s−
n

lo
g
n

)/
n bMQMS

MQMS

MQMS11/5

Number of comparisons (linear term) of MoMQuickMergesort variants

and simulated worst cases.

Counting comparisons

Algorithm
average case worst case

exp. theo. exp. theo.

bMQMS 2.772 ± 0.02 – 13.05 ± 0.17 13.8

MQMS 2.084 ± 0.001 2.094 4.220 ± 0.007 4.57

MQMS11/5 0.246 ± 0.01 0.275 1.218 ± 0.011 1.59

210 213 216 219 222 225 228

number of elements n

0

1

2

3

4

(c
om

p
ar

is
on

s−
n

lo
g
n

)/
n bMQMS

MQMS

MQMS11/5

MQMS11/5 (wc)

MQMS (wc)

Number of comparisons (linear term) of MoMQuickMergesort variants
and simulated worst cases.

Running times

210 213 216 219 222 225 228

number of elements n

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

ti
m

e
p

er
n

lo
g
n

[n
s]

bMQMS

MQMS

MQMS11/5

MQMS11/5 (wc)

MQMS (wc)

bMQMS (wc)

Running times of different MoMQuickMergesort variants and their
simulated worst cases for random permutations of 32-bit integers.

Running times

210 213 216 219 222 225 228

number of elements n

3.0

3.5

4.0

4.5

5.0

ti
m

e
p

er
n

lo
g
n

[n
s]

In-situ Mergesort

MQMS11/5

std::sort
(Introsort)

std::partial sort
(Heapsort)

std::stable sort
(Mergesort)

Wikisort

MQMS11/5 (wc)

Running times for random permutations of 32-bit integers.

Running times

210 215 220 225

number of elements n

5

10

15

20

25

ti
m

e
p

er
n

lo
g
n

[n
s]

MQMS11/5

std::sort
(Introsort)

std::partial sort
(Heapsort)

std::sort (MQMS worst case stopper)

210 215 220 225

number of elements n

5

10

15

20

25

ti
m

e
p

er
n

lo
g
n

[n
s]

Running times for sorting integers.
Left: random inputs.
Right: Random with large elements in the middle and end.

Running times

210 215 220 225

number of elements n

3.0

3.5

4.0

4.5

ti
m

e
p

er
n

lo
g
n

[n
s]

MQMS11/5

std::sort
(Introsort)

std::partial sort
(Heapsort)

std::sort (MQMS worst case stopper)

210 215 220 225

number of elements n

3.0

3.5

4.0

4.5

ti
m

e
p

er
n

lo
g
n

[n
s]

Running times for sorting integers.
Left: random inputs.
Right: Random with large elements in the middle and end.

Conclusion

Algorithm Fast on average “in place” O(n log n) worst case

Quicksort 3 3 7

Heapsort 7 3 3

Mergesort 3 7 3

MoMQuickMergesort 3 3 3

MQMS11/5 is an unstable sorting algorithm with

n log n + 1.59n + o(n) comparisons in the worst case
n log n + 0.275n + o(n) comparisons in the average case

Implementation with stl-style interface1.

Thank you!

1Code available at https://github.com/weissan/QuickXsort

https://github.com/weissan/QuickXsort

Conclusion

Algorithm Fast on average “in place” O(n log n) worst case

Quicksort 3 3 7

Heapsort 7 3 3

Mergesort 3 7 3

MoMQuickMergesort 3 3 3

MQMS11/5 is an unstable sorting algorithm with

n log n + 1.59n + o(n) comparisons in the worst case
n log n + 0.275n + o(n) comparisons in the average case

Implementation with stl-style interface1.

Thank you!

1Code available at https://github.com/weissan/QuickXsort

https://github.com/weissan/QuickXsort

Conclusion

Algorithm Fast on average “in place” O(n log n) worst case

Quicksort 3 3 7

Heapsort 7 3 3

Mergesort 3 7 3

MoMQuickMergesort 3 3 3

MQMS11/5 is an unstable sorting algorithm with

n log n + 1.59n + o(n) comparisons in the worst case
n log n + 0.275n + o(n) comparisons in the average case

Implementation with stl-style interface1.

Thank you!
1Code available at https://github.com/weissan/QuickXsort

https://github.com/weissan/QuickXsort

Experiments with larger records

210 212 214 216 218 220 222

number of elements n

6

8

10

12

14

16

18

20

ti
m

e
p

er
n

lo
g
n

[n
s]

In-situ Mergesort

MQMS11/5

std::sort
(Introsort)

std::partial sort
(Heapsort)

std::stable sort
(Mergesort)

Wikisort

MQMS11/5 (wc)

Running times of MoMQuickMergesort (average and simulated worst
case), hybrid QMS and other algorithms for random permutations
44-byte records with 4-byte keys.

Experiments sorting pointers

210 212 214 216 218 220 222

number of elements n

20

30

40

50

60

ti
m

e
p

er
n

lo
g
n

[n
s]

In-situ Mergesort

MQMS11/5

std::sort
(Introsort)

std::partial sort
(Heapsort)

std::stable sort
(Mergesort)

MQMS11/5 (wc)

Running times of MoMQuickMergesort (average and simulated worst
case), hybrid QMS and other algorithms for random permutations of
pointers to records.

Experimental setup

Experiments with random permutations of 32bit integers (other data
types in proceedings).

running time and comparison count

≥ 100 measurements for each data point

Test environment:

Intel Core i5-2500K CPU (3.30GHz) with 16GB RAM
Ubuntu Linux 64bit version 14.04.4
g++ (4.8.4) compiler with flags -O3 -march=native

