Conjugacy in Baumslag-Solitar groups

Armin Weiß
Universität Stuttgart, FMI

Bordeaux, June 15, 2015

Let G be a group, generated by a finite set Σ with $\Sigma=\Sigma^{-1} \subseteq G$. Write \bar{a} for $a^{-1} \in \Sigma$.

- Word problem: Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?
- Conjugacy problem: Given $v, w \in \Sigma^{*}$. Question: $v \sim w$?

$$
\left(\exists z \in G \text { such that } z v z^{-1}=w ?\right)
$$

Dehn's fundamental problems

Let G be a group, generated by a finite set Σ with $\Sigma=\Sigma^{-1} \subseteq G$. Write \bar{a} for $a^{-1} \in \Sigma$.

- Word problem: Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?
- Conjugacy problem: Given $v, w \in \Sigma^{*}$. Question: $v \sim w$?

$$
\left(\exists z \in G \text { such that } z v z^{-1}=w ?\right)
$$

Structure of the talk:

- Overview
- Word problem
- Conjugacy problem
- Generalized Baumslag-Solitar groups

Overview: Classification of Baumslag-Solitar groups

Baumslag-Solitar group:

$$
\begin{aligned}
\mathbf{B S}_{p, q} & =\left\langle a, t \mid t a^{p} t^{-1}=a^{q}\right\rangle \\
& =\operatorname{HNN}\left(\langle a\rangle, t ; a^{p} \mapsto a^{q}\right)
\end{aligned}
$$

W.I.o.g. $1 \leq p \leq|q|$.

Overview: Classification of Baumslag-Solitar groups

Baumslag-Solitar group:

$$
\begin{aligned}
\mathrm{BS}_{p, q} & =\left\langle a, t \mid t a^{p} t^{-1}=a^{q}\right\rangle \\
& =\operatorname{HNN}\left(\langle a\rangle, t ; a^{p} \mapsto a^{q}\right)
\end{aligned}
$$

W.I.o.g. $1 \leq p \leq|q|$.

- G is solvable $\Longleftrightarrow p=1$,
- G is linear $\Longleftrightarrow p=|q|$ or $p=1$,
- G is not linear, otherwise.

Overview: Word and conjugacy problem

The word problem of $\mathbf{B S}_{p, q}$ is solvable in polynomial time.

Overview: Word and conjugacy problem

The word problem of $\mathbf{B S}_{p, q}$ is solvable in polynomial time.

Theorem (Robinson, 1993)

The word problem of $\mathbf{B S}_{1, q}$ is in non-uniform TC^{0}.
$\mathrm{TC}^{0}=$ recognized by a family of circuits of constant depth with unbounded fan-in \neg, \wedge, \vee, and majority gates.

Overview: Word and conjugacy problem

The word problem of $\mathbf{B S}_{p, q}$ is solvable in polynomial time.

Theorem (Robinson, 1993)

The word problem of $\mathbf{B S}_{1, q}$ is in non-uniform TC^{0}.
$\mathrm{TC}^{0}=$ recognized by a family of circuits of constant depth with unbounded fan-in \neg, \wedge, \vee, and majority gates.

Theorem (Diekert, Miasnikov, W., 2014)

The word and conjugacy problem of $\mathbf{B S}_{1, q}$ are (uniform) TC ${ }^{0}$-complete.

Overview: Word and conjugacy problem

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)
The word problem of linear groups (in particular for linear Baumslag-Solitar groups) can be solved in LOGSPACE.

Overview: Word and conjugacy problem

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)

The word problem of linear groups (in particular for linear Baumslag-Solitar groups) can be solved in LOGSPACE.

Theorem (W., 2015)

The word and conjugacy problem of $\mathbf{B S}_{p, q}$ is in LOGDCFL.
The conjugacy problem of $\mathbf{B S}_{p, q}$ is LOGSPACE-Turing-reducible to the word problem.

LOGDCFL $=$ LOGSPACE-reducible to a det. context-free language

Overview: Word and conjugacy problem

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)

The word problem of linear groups (in particular for linear Baumslag-Solitar groups) can be solved in LOGSPACE.

Theorem (W., 2015)

The word and conjugacy problem of $\mathbf{B S}_{p, q}$ is in LOGDCFL.
The conjugacy problem of $\mathbf{B S}_{p, q}$ is LOGSPACE-Turing-reducible to the word problem.

LOGDCFL $=$ LOGSPACE-reducible to a det. context-free language

Conjecture (W., 2014)

The conjugacy problem of $\mathbf{B S}_{p, q}$ is in LOGSPACE.

Proof: the word problem of $\mathrm{BS}_{1,2}$ is in TC^{0}

$$
\mathbf{B S}_{1,2} \cong \mathbb{Z}[1 / 2] \rtimes \mathbb{Z}=\{(r, m) \mid r \in \mathbb{Z}[1 / 2], m \in \mathbb{Z}\}
$$

with multiplication

$$
(r, m) \cdot(s, q)=\left(r+2^{m} s, m+q\right) .
$$

$\left(\mathbb{Z}[1 / 2]=\left\{p / 2^{q} \in \mathbb{Q} \mid p, q \in \mathbb{Z}\right\}\right)$

Proof: the word problem of $\mathrm{BS}_{1,2}$ is in TC^{0}

$$
\mathbf{B S}_{1,2} \cong \mathbb{Z}[1 / 2] \rtimes \mathbb{Z}=\{(r, m) \mid r \in \mathbb{Z}[1 / 2], m \in \mathbb{Z}\}
$$

with multiplication

$$
(r, m) \cdot(s, q)=\left(r+2^{m} s, m+q\right) .
$$

$\left(\mathbb{Z}[1 / 2]=\left\{p / 2^{q} \in \mathbb{Q} \mid p, q \in \mathbb{Z}\right\}\right)$
The isomorphism is given by

$$
a \mapsto(1,0), \quad t \mapsto(0,1) .
$$

Example

$$
\operatorname{tata} \bar{t} \mapsto(0,1)(1,0)(0,1)(1,0)(1,0)(0,-1)
$$

Proof: the word problem of $\mathrm{BS}_{1,2}$ is in TC^{0}

$$
\mathbf{B S}_{1,2} \cong \mathbb{Z}[1 / 2] \rtimes \mathbb{Z}=\{(r, m) \mid r \in \mathbb{Z}[1 / 2], m \in \mathbb{Z}\}
$$

with multiplication

$$
(r, m) \cdot(s, q)=\left(r+2^{m} s, m+q\right) .
$$

$\left(\mathbb{Z}[1 / 2]=\left\{p / 2^{q} \in \mathbb{Q} \mid p, q \in \mathbb{Z}\right\}\right)$
The isomorphism is given by

$$
a \mapsto(1,0), \quad t \mapsto(0,1) .
$$

Example

$$
\begin{aligned}
\text { tataa } \bar{t} & \mapsto(0,1)(1,0)(0,1)(1,0)(1,0)(0,-1) \\
& =(0,1)(1,0)(0,1)(1,0)(1,-1)
\end{aligned}
$$

Proof: the word problem of $\mathrm{BS}_{1,2}$ is in TC^{0}

$$
\mathbf{B S}_{1,2} \cong \mathbb{Z}[1 / 2] \rtimes \mathbb{Z}=\{(r, m) \mid r \in \mathbb{Z}[1 / 2], m \in \mathbb{Z}\}
$$

with multiplication

$$
(r, m) \cdot(s, q)=\left(r+2^{m} s, m+q\right) .
$$

$\left(\mathbb{Z}[1 / 2]=\left\{p / 2^{q} \in \mathbb{Q} \mid p, q \in \mathbb{Z}\right\}\right)$
The isomorphism is given by

$$
a \mapsto(1,0), \quad t \mapsto(0,1) .
$$

Example

$$
\begin{aligned}
\text { tataa } \bar{t} & \mapsto(0,1)(1,0)(0,1)(1,0)(1,0)(0,-1) \\
& =(0,1)(1,0)(0,1)(2,-1)
\end{aligned}
$$

Proof: the word problem of $\mathrm{BS}_{1,2}$ is in TC^{0}

$$
\mathbf{B S}_{1,2} \cong \mathbb{Z}[1 / 2] \rtimes \mathbb{Z}=\{(r, m) \mid r \in \mathbb{Z}[1 / 2], m \in \mathbb{Z}\}
$$

with multiplication

$$
(r, m) \cdot(s, q)=\left(r+2^{m} s, m+q\right) .
$$

$\left(\mathbb{Z}[1 / 2]=\left\{p / 2^{q} \in \mathbb{Q} \mid p, q \in \mathbb{Z}\right\}\right)$
The isomorphism is given by

$$
a \mapsto(1,0), \quad t \mapsto(0,1) .
$$

Example

$$
\begin{aligned}
\text { tataa } \bar{t} & \mapsto(0,1)(1,0)(0,1)(1,0)(1,0)(0,-1) \\
& =(0,1)(1,0)(4,0)
\end{aligned}
$$

Proof: the word problem of $\mathrm{BS}_{1,2}$ is in TC^{0}

$$
\mathbf{B S}_{1,2} \cong \mathbb{Z}[1 / 2] \rtimes \mathbb{Z}=\{(r, m) \mid r \in \mathbb{Z}[1 / 2], m \in \mathbb{Z}\}
$$

with multiplication

$$
(r, m) \cdot(s, q)=\left(r+2^{m} s, m+q\right) .
$$

$\left(\mathbb{Z}[1 / 2]=\left\{p / 2^{q} \in \mathbb{Q} \mid p, q \in \mathbb{Z}\right\}\right)$
The isomorphism is given by

$$
a \mapsto(1,0), \quad t \mapsto(0,1) .
$$

Example

$$
\begin{aligned}
\text { tataat } & \mapsto(0,1)(1,0)(0,1)(1,0)(1,0)(0,-1) \\
& =(0,1)(5,0)
\end{aligned}
$$

Proof: the word problem of $\mathrm{BS}_{1,2}$ is in TC^{0}

$$
\mathbf{B S}_{1,2} \cong \mathbb{Z}[1 / 2] \rtimes \mathbb{Z}=\{(r, m) \mid r \in \mathbb{Z}[1 / 2], m \in \mathbb{Z}\}
$$

with multiplication

$$
(r, m) \cdot(s, q)=\left(r+2^{m} s, m+q\right) .
$$

$\left(\mathbb{Z}[1 / 2]=\left\{p / 2^{q} \in \mathbb{Q} \mid p, q \in \mathbb{Z}\right\}\right)$
The isomorphism is given by

$$
a \mapsto(1,0), \quad t \mapsto(0,1) .
$$

Example

$$
\begin{aligned}
\text { tataat } & \mapsto(0,1)(1,0)(0,1)(1,0)(1,0)(0,-1) \\
& =(10,1)
\end{aligned}
$$

Proof: the word problem of $\mathrm{BS}_{1,2}$ is in TC^{0}

Lemma

Let $\left(r_{1}, m_{1}\right), \ldots,\left(r_{n}, m_{n}\right) \in \mathbb{Z}[1 / 2] \rtimes \mathbb{Z}$. Then, for $(r, m)=\left(r_{1}, m_{1}\right) \cdots\left(r_{n}, m_{n}\right)$, we have $m=\sum_{i=1}^{n} m_{i}$ and

$$
r=\sum_{i=1}^{n} r_{i} \cdot \prod_{j=1}^{i-1} 2^{m_{j}}
$$

Proof: the word problem of $\mathrm{BS}_{1,2}$ is in TC^{0}

Lemma

Let $\left(r_{1}, m_{1}\right), \ldots,\left(r_{n}, m_{n}\right) \in \mathbb{Z}[1 / 2] \rtimes \mathbb{Z}$. Then, for $(r, m)=\left(r_{1}, m_{1}\right) \cdots\left(r_{n}, m_{n}\right)$, we have $m=\sum_{i=1}^{n} m_{i}$ and

$$
r=\sum_{i=1}^{n} r_{i} \cdot \prod_{j=1}^{i-1} 2^{m_{j}}
$$

Proof: by induction using $(r, m) \cdot(s, q)=\left(r+2^{m} s, m+q\right)$.

Proof: the word problem of $\mathrm{BS}_{1,2}$ is in TC^{0}

Lemma

Let $\left(r_{1}, m_{1}\right), \ldots,\left(r_{n}, m_{n}\right) \in \mathbb{Z}[1 / 2] \rtimes \mathbb{Z}$. Then, for
$(r, m)=\left(r_{1}, m_{1}\right) \cdots\left(r_{n}, m_{n}\right)$, we have $m=\sum_{i=1}^{n} m_{i}$ and

$$
r=\sum_{i=1}^{n} r_{i} \cdot \prod_{j=1}^{i-1} 2^{m_{j}}
$$

Proof: by induction using $(r, m) \cdot(s, q)=\left(r+2^{m} s, m+q\right)$.

Corollary (Diekert, Miasnikov, W., 2014)

The word problem of $\mathbf{B S}_{1, q}$ is in uniform $\mathbf{T C}^{0}$.
Proof: iterated addition and iterated multiplication (Hesse, 2001) is in uniform TC^{0}.

Proof: the word problem of $\mathrm{BS}_{1,2}$ is in TC^{0}

Lemma

Let $\left(r_{1}, m_{1}\right), \ldots,\left(r_{n}, m_{n}\right) \in \mathbb{Z}[1 / 2] \rtimes \mathbb{Z}$. Then, for $(r, m)=\left(r_{1}, m_{1}\right) \cdots\left(r_{n}, m_{n}\right)$, we have $m=\sum_{i=1}^{n} m_{i}$ and

$$
r=\sum_{i=1}^{n} r_{i} \cdot \prod_{j=1}^{i-1} 2^{m_{j}}
$$

Proof: by induction using $(r, m) \cdot(s, q)=\left(r+2^{m} s, m+q\right)$.

Corollary (Diekert, Miasnikov, W., 2014)

The word problem of $\mathbf{B S}_{1, q}$ is in uniform $\mathbf{T C}^{0}$.
Proof: iterated addition and iterated multiplication (Hesse, 2001) is in uniform TC^{0}.

Theorem (König, Lohrey, 2015)

The word problem of f.g. solvable linear groups is in uniform TC ${ }^{0}$.

The word problem of $\mathrm{BS}_{p, q}$
$\mathbf{B S}_{p, q}$ contains a free subgroup $\left\langle t, a t a^{-1}\right\rangle$ if $|p|,|q| \neq 1$.
$\mathrm{BS}_{p, q}$ contains a free subgroup $\left\langle t, a t a^{-1}\right\rangle$ if $|p|,|q| \neq 1$.
\rightsquigarrow word problem is NC ${ }^{1}$-hard (Robinson, 1993).
$\mathbf{B S}_{p, q}$ contains a free subgroup $\left\langle t, a t a^{-1}\right\rangle$ if $|p|,|q| \neq 1$.
\rightsquigarrow word problem is NC ${ }^{1}$-hard (Robinson, 1993).
Two aspects:

- Word problem of solvable Baumslag-Solitar groups.
- Word problem of the free group F_{2}.
$\mathbf{B S}_{p, q}$ contains a free subgroup $\left\langle t, a t a^{-1}\right\rangle$ if $|p|,|q| \neq 1$.
\rightsquigarrow word problem is NC ${ }^{1}$-hard (Robinson, 1993).
Two aspects:
- Word problem of solvable Baumslag-Solitar groups.
- Word problem of the free group F_{2}.

Britton's Lemma

$w \in\langle a\rangle=A$ in $\mathbf{B S}_{p, q} \Longleftrightarrow w$ can be reduced to some word in $\{a, \bar{a}\}^{*}$ by Britton reductions

$$
t^{\varepsilon} a^{k} t^{-\varepsilon} \rightarrow a^{\ell} \quad(\varepsilon \in\{ \pm 1\}) .
$$

$\mathrm{BS}_{p, q}$ contains a free subgroup $\left\langle t, a t a^{-1}\right\rangle$ if $|p|,|q| \neq 1$.
\rightsquigarrow word problem is NC ${ }^{1}$-hard (Robinson, 1993).
Two aspects:

- Word problem of solvable Baumslag-Solitar groups.
- Word problem of the free group F_{2}.

Britton's Lemma

$w \in\langle a\rangle=A$ in $\mathbf{B S}_{p, q} \Longleftrightarrow w$ can be reduced to some word in $\{a, \bar{a}\}^{*}$ by Britton reductions

$$
t^{\varepsilon} a^{k} t^{-\varepsilon} \rightarrow a^{\ell} \quad(\varepsilon \in\{ \pm 1\}) .
$$

\rightsquigarrow word problem in P by storing exponents in binary.

Consider the subgroup $\langle t\rangle(=$ quotient $a \mapsto 1, t \mapsto t)$:

- $w=1$ if and only if every t cancels with some \bar{t}.

Consider the subgroup $\langle t\rangle(=$ quotient $a \mapsto 1, t \mapsto t)$:

- $w=1$ if and only if every t cancels with some \bar{t}.
- Only letters on the same level can cancel!

Consider the subgroup $\langle t\rangle(=$ quotient $a \mapsto 1, t \mapsto t)$:

- $w=1$ if and only if every t cancels with some \bar{t}.
- Only letters on the same level can cancel!

Consider the subgroup $\langle t\rangle(=$ quotient $a \mapsto 1, t \mapsto t)$:

- $w=1$ if and only if every t cancels with some \bar{t}.
- Only letters on the same level can cancel!

New rule: only letters with the same color can cancel

Consider the subgroup $\langle t\rangle(=$ quotient $a \mapsto 1, t \mapsto t)$:

- $w=1$ if and only if every t cancels with some \bar{t}.
- Only letters on the same level can cancel!

New rule: only letters with the same color can cancel

Consider the subgroup $\langle t\rangle(=$ quotient $a \mapsto 1, t \mapsto t)$:

- $w=1$ if and only if every t cancels with some \bar{t}.
- Only letters on the same level can cancel!

New rule: only letters with the same color can cancel

Consider the subgroup $\langle t\rangle(=$ quotient $a \mapsto 1, t \mapsto t)$:

- $w=1$ if and only if every t cancels with some \bar{t}.
- Only letters on the same level can cancel!

New rule: only letters with the same color can cancel
\rightsquigarrow word problem of the free group

New rule: only letters with the same color can cancel
\rightsquigarrow word problem of the free group but also in $\mathbf{B S}_{p, q}$:

$$
w=t \text { at } a \bar{t} \text { aaa } t a \bar{t} a \bar{t} t a a \bar{t} \in \mathbf{B S}_{2,3}
$$

New rule: only letters with the same color can cancel
\rightsquigarrow word problem of the free group but also in $\mathbf{B S}_{p, q}$:

$$
w=t \text { at a } \bar{t} \text { aaa } t a \bar{t} a \bar{t} t a a \bar{t} \in \mathbf{B S}_{2,3}
$$

New rule: only letters with the same color can cancel
\rightsquigarrow word problem of the free group but also in $\mathbf{B S}_{p, q}$:

$$
w=t \text { at a } \bar{t} \text { aaa } t a \bar{t} a \bar{t} t a a \bar{t} \in \mathbf{B S}_{2,3}
$$

New rule: only letters with the same color can cancel
\rightsquigarrow word problem of the free group but also in $\mathbf{B S}_{p, q}$:

$$
w=t \text { at a } \bar{t} \text { aaa } t a \bar{t} a \bar{t} t a \bar{t} \in \mathbf{B S}_{2,3}
$$

New rule: only letters with the same color can cancel
\rightsquigarrow word problem of the free group but also in $\mathbf{B S}_{p, q}$:

$$
w=t \text { at a } \bar{t} \text { aaa } t a \bar{t} a \bar{t} t a \bar{t}^{\prime} \in \mathbf{B S}_{2,3}
$$

New rule: only letters with the same color can cancel
\rightsquigarrow word problem of the free group but also in $\mathbf{B S}_{p, q}$:

$$
w=t \text { at a } \bar{t} \text { aaa } t a \bar{t} a \bar{t} t a a \bar{t} \in \mathbf{B S}_{2,3}
$$

New rule: only letters with the same color can cancel
\rightsquigarrow word problem of the free group but also in $\mathrm{BS}_{p, q}$:

$$
w=t a t a \bar{t} \text { aaa } t a \bar{t} a \bar{t} t a a \bar{t} \in \mathbf{B S}_{2,3}
$$

$\rightsquigarrow w \in\langle a\rangle=A$

The word problem of $\mathrm{BS}_{p, q}$
How to compute the color?

How to compute the color?

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{i}} a^{k_{i}} t^{\varepsilon_{i+1}} a^{k_{i+1}} \cdots t^{\varepsilon_{j}} a^{k_{j}} t^{\varepsilon_{j+1}} a^{k_{j+1}} \cdots t^{\varepsilon_{n}} a^{k_{n}}
$$

with $\varepsilon_{\mu} \in\{ \pm 1\}, k_{\mu} \in \mathbb{Z}$. Define

$$
\begin{aligned}
w_{i, j} & =a^{k_{i}} t^{\varepsilon_{i+1}} a^{k_{i+1}} \cdots t^{\varepsilon_{j}} a^{k_{j}} \\
k_{i, j} & =\sum_{\nu=i}^{j} k_{\nu} \cdot \prod_{\mu=i+1}^{\nu}\left(\frac{q}{p}\right)^{\varepsilon_{\mu}} \in \mathbb{Z}[1 / p q]
\end{aligned}
$$

How to compute the color?

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{i}} a^{k_{i}} t^{\varepsilon_{i+1}} a^{k_{i+1}} \cdots t^{\varepsilon_{j}} a^{k_{j}} t^{\varepsilon_{j+1}} a^{k_{j+1}} \cdots t^{\varepsilon_{n}} a^{k_{n}}
$$

with $\varepsilon_{\mu} \in\{ \pm 1\}, k_{\mu} \in \mathbb{Z}$. Define

$$
\begin{aligned}
w_{i, j} & =a^{k_{i}} t^{\varepsilon_{i+1}} a^{k_{i+1}} \cdots t^{\varepsilon_{j}} a^{k_{j}} \\
k_{i, j} & =\sum_{\nu=i}^{j} k_{\nu} \cdot \prod_{\mu=i+1}^{\nu}\left(\frac{q}{p}\right)^{\varepsilon_{\mu}} \in \mathbb{Z}[1 / p q]
\end{aligned}
$$

Numbers $k_{i, j}$ can be computed in TC ${ }^{0}$.

How to compute the color?

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{i}} a^{k_{i}} t^{\varepsilon_{i+1}} a^{k_{i+1}} \cdots t^{\varepsilon_{j}} a^{k_{j}} t^{\varepsilon_{j+1}} a^{k_{j+1}} \cdots t^{\varepsilon_{n}} a^{k_{n}}
$$

with $\varepsilon_{\mu} \in\{ \pm 1\}, k_{\mu} \in \mathbb{Z}$. Define

$$
\begin{aligned}
w_{i, j} & =a^{k_{i}} t^{\varepsilon_{i+1}} a^{k_{i+1}} \cdots t^{\varepsilon_{j}} a^{k_{j}} \\
k_{i, j} & =\sum_{\nu=i}^{j} k_{\nu} \cdot \prod_{\mu=i+1}^{\nu}\left(\frac{q}{p}\right)^{\varepsilon_{\mu}} \in \mathbb{Z}[1 / p q]
\end{aligned}
$$

Numbers $k_{i, j}$ can be computed in TC ${ }^{0}$.

Lemma 1

$$
w_{i, j} \in A \Longleftrightarrow w_{i, j}=a^{k_{i, j}} \text { in } \mathbf{B S}_{p, q}
$$

How to compute the color?

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{i}} a^{k_{i}} t^{\varepsilon_{i+1}} a^{k_{i+1}} \cdots t^{\varepsilon_{j}} a^{k_{j}} t^{\varepsilon_{j+1}} a^{k_{j+1}} \cdots t^{\varepsilon_{n}} a^{k_{n}}
$$

with $\varepsilon_{\mu} \in\{ \pm 1\}, k_{\mu} \in \mathbb{Z}$. Define

$$
\begin{aligned}
w_{i, j} & =a^{k_{i}} t^{\varepsilon_{i+1}} a^{k_{i+1}} \cdots t^{\varepsilon_{j}} a^{k_{j}} \\
k_{i, j} & =\sum_{\nu=i}^{j} k_{\nu} \cdot \prod_{\mu=i+1}^{\nu}\left(\frac{q}{p}\right)^{\varepsilon_{\mu}} \in \mathbb{Z}[1 / p q]
\end{aligned}
$$

Numbers $k_{i, j}$ can be computed in TC ${ }^{0}$.

Lemma 1

$$
w_{i, j} \in A \Longleftrightarrow w_{i, j}=a^{k_{i, j}} \text { in } \mathbf{B S}_{p, q}
$$

Proof.

Induction: by Britton's Lemma, $w=a^{k_{0}} t^{\varepsilon_{1}} w^{\prime} t^{-\varepsilon_{1}} w^{\prime \prime}$.

Define a relation $\sim_{\mathcal{C}} \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$:
For $i<j$:

$$
\begin{array}{r}
i \sim_{\mathcal{C}} j \Longleftrightarrow \varepsilon_{i}=-\varepsilon_{j} \text { and } \sum_{\ell=i+1}^{j-1} \varepsilon_{\ell}=0 \quad \text { (same level) } \\
\text { and } k_{i, j-1} \in \begin{cases}p \mathbb{Z} & \text { if } \varepsilon_{i}=1 \\
q \mathbb{Z} & \text { if } \varepsilon_{i}=-1 .\end{cases}
\end{array}
$$

For $i>j: i \sim_{\mathcal{C}} j \Longleftrightarrow j \sim_{\mathcal{C}} i$.
$\rightsquigarrow i \sim_{\mathcal{C}} j \Longleftrightarrow t^{\varepsilon_{i}}$ and $t^{\varepsilon_{j}}$ are on the same level and cancel if everything in between cancels.

Define a relation $\sim_{\mathcal{C}} \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$:
For $i<j$:

$$
\begin{array}{r}
i \sim_{\mathcal{C}} j \Longleftrightarrow \varepsilon_{i}=-\varepsilon_{j} \text { and } \sum_{\ell=i+1}^{j-1} \varepsilon_{\ell}=0 \\
\text { and } k_{i, j-1} \in \begin{cases}p \mathbb{Z} & \text { if } \varepsilon_{i}=1 \\
q \mathbb{Z} & \text { if } \varepsilon_{i}=-1\end{cases}
\end{array}
$$

For $i>j: i \sim_{\mathcal{C}} j \Longleftrightarrow j \sim_{\mathcal{C}} i$.
$\rightsquigarrow i \sim_{\mathcal{C}} j \Longleftrightarrow t^{\varepsilon_{i}}$ and $t^{\varepsilon_{j}}$ are on the same level and cancel if everything in between cancels.
$\approx=$ reflexive and transitive closure of $\sim_{\mathcal{C}}$

The word problem of $\mathrm{BS}_{p, q}$

Define a relation $\sim_{\mathcal{C}} \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$:
For $i<j$:

$$
\begin{array}{r}
i \sim_{\mathcal{C}} j \Longleftrightarrow \varepsilon_{i}=-\varepsilon_{j} \text { and } \sum_{\ell=i+1}^{j-1} \varepsilon_{\ell}=0 \quad \text { (same level) } \\
\text { and } k_{i, j-1} \in \begin{cases}p \mathbb{Z} & \text { if } \varepsilon_{i}=1 \\
q \mathbb{Z} & \text { if } \varepsilon_{i}=-1 .\end{cases}
\end{array}
$$

For $i>j: i \sim_{\mathcal{C}} j \Longleftrightarrow j \sim_{\mathcal{C}} i$.
$\rightsquigarrow i \sim_{\mathcal{C}} j \Longleftrightarrow t^{\varepsilon_{i}}$ and $t^{\varepsilon_{j}}$ are on the same level and cancel if everything in between cancels.
$\approx=$ reflexive and transitive closure of $\sim_{\mathcal{C}}$
Lemma 2
If $i \approx j$ and $\varepsilon_{i}=-\varepsilon_{j}$, then $i \sim_{\mathcal{C}} j$.

The word problem of $\mathrm{BS}_{p, q}$

Proof.

Show: $i \sim_{\mathcal{C}} \ell, \ell \sim_{\mathcal{C}} m$, and $m \sim_{\mathcal{C}} j \Longrightarrow i \sim_{\mathcal{C}} j$. Then induction.

The word problem of $\mathrm{BS}_{p, q}$

Proof.

Show: $i \sim_{\mathcal{C}} \ell, \ell \sim_{\mathcal{C}} m$, and $m \sim_{\mathcal{C}} j \Longrightarrow i \sim_{\mathcal{C}} j$. Then induction.
Let $\{\alpha, \beta, \gamma, \delta\}=\{i, j, \ell, m\}$ with $\alpha<\beta<\gamma<\delta$.

The word problem of $\mathrm{BS}_{p, q}$

Proof.

Show: $i \sim_{\mathcal{C}} \ell, \ell \sim_{\mathcal{C}} m$, and $m \sim_{\mathcal{C}} j \Longrightarrow i \sim_{\mathcal{C}} j$. Then induction.
Let $\{\alpha, \beta, \gamma, \delta\}=\{i, j, \ell, m\}$ with $\alpha<\beta<\gamma<\delta$.

$$
k_{\alpha, \delta-1}=k_{\alpha, \beta-1}+\frac{p}{q} \cdot k_{\beta, \gamma-1}+k_{\gamma, \delta-1}
$$

How to compute the color? Color $=\approx$-class.

$$
\begin{gathered}
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q} \\
\text { Let } \Sigma_{w}=\left\{t_{[i]}, \bar{t}_{[i]} \mid i \in\{1, \ldots, n\}\right\} \text { be a new set of generators: } \\
\widetilde{w}:=t_{[1]}^{\varepsilon_{1}} \cdots t_{[n]}^{\varepsilon_{n}} \quad \widetilde{w}_{i, j}:=t_{[i+1]}^{\varepsilon_{i+1}} \cdots t_{[j]}^{\varepsilon_{j}}
\end{gathered}
$$

The word problem of $\mathbf{B S}_{p, q}$

How to compute the color? Color $=\approx$-class.

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q}
$$

Let $\Sigma_{w}=\left\{t_{[i]}, \bar{t}_{[i]} \mid i \in\{1, \ldots, n\}\right\}$ be a new set of generators:

$$
\widetilde{w}:=t_{[1]}^{\varepsilon_{1}} \cdots t_{[n]}^{\varepsilon_{n}} \quad \widetilde{w}_{i, j}:=t_{[i+1]}^{\varepsilon_{i+1}} \cdots t_{[j]}^{\varepsilon_{j}}
$$

Example

The word problem of $\mathrm{BS}_{p, q}$

How to compute the color? Color $=\approx$-class.

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q}
$$

Let $\Sigma_{w}=\left\{t_{[i]}, \bar{t}_{[i]} \mid i \in\{1, \ldots, n\}\right\}$ be a new set of generators:

$$
\widetilde{w}:=t_{[1]}^{\varepsilon_{1}} \cdots t_{[n]}^{\varepsilon_{n}} \quad \widetilde{w}_{i, j}:=t_{[i+1]}^{\varepsilon_{i+1}} \cdots t_{[j]}^{\varepsilon_{j}}
$$

Example

$\boldsymbol{w}=t a t a \bar{t}$ aaata $\bar{t} a \bar{t} t a a^{t} \mapsto \widetilde{\boldsymbol{w}}=t_{[1]} t_{[2]} \bar{t}_{[3]} t_{[3]} \bar{t}_{[2]} \bar{t}_{[1]} t_{[1]} \bar{t}_{[1]}$
Lemma 3

$$
w_{i, j} \in A \Longleftrightarrow \widetilde{w}_{i, j}=1 \text { in } F\left(\Sigma_{w}\right)
$$

The word problem of $\mathrm{BS}_{p, q}$
How to compute the color? Color $=\approx$-class.

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q}
$$

Let $\Sigma_{w}=\left\{t_{[i]}, \bar{t}_{[i]} \mid i \in\{1, \ldots, n\}\right\}$ be a new set of generators:

$$
\widetilde{w}:=t_{[1]}^{\varepsilon_{1}} \cdots t_{[n]}^{\varepsilon_{n}} \quad \widetilde{w}_{i, j}:=t_{[i+1]}^{\varepsilon_{i+1}} \cdots t_{[j]}^{\varepsilon_{j}}
$$

Example

$\boldsymbol{w}=t a t a \bar{t}$ aaatatatat aat $\mapsto \widetilde{\boldsymbol{w}}=t_{[1]} t_{[2]} \bar{t}_{[3]} t_{[3]} \bar{t}_{[2]} \bar{t}_{[1]} t_{[1]} \bar{t}_{[1]}$
Lemma 3

$$
w_{i, j} \in A \Longleftrightarrow \widetilde{w}_{i, j}=1 \operatorname{in} F\left(\Sigma_{w}\right)
$$

Corollary

$$
w=1 \text { in } \mathbf{B S}_{p, q} \Longleftrightarrow \widetilde{w}=1 \text { in } F\left(\Sigma_{w}\right) \text { and } k_{0, n}=0 .
$$

The word problem of $\mathrm{BS}_{p, q}$

Proof of Lemma 3.

Let $w_{i, j} \in\langle a\rangle=A$. By Britton's Lemma,

$$
w_{i, j}=a^{k_{i}} t^{\varepsilon_{i+1}} w_{i+1, \ell-1} t^{\varepsilon_{\ell}} w_{\ell, j}
$$

with $\varepsilon_{\ell}=-\varepsilon_{i+1}, w_{\ell, j} \in A$, and

$$
w_{i+1, \ell-1} \in \begin{cases}\left\langle a^{p}\right\rangle & \text { if } \varepsilon_{i+1}=1 \\ \left\langle a^{q}\right\rangle & \text { if } \varepsilon_{i+1}=-1\end{cases}
$$

Proof of Lemma 3.

Let $w_{i, j} \in\langle a\rangle=A$. By Britton's Lemma,

$$
w_{i, j}=a^{k_{i}} t^{\varepsilon_{i+1}} w_{i+1, \ell-1} t^{\varepsilon_{\ell}} w_{\ell, j}
$$

with $\varepsilon_{\ell}=-\varepsilon_{i+1}, w_{\ell, j} \in A$, and

$$
w_{i+1, \ell-1} \in \begin{cases}\left\langle a^{p}\right\rangle & \text { if } \varepsilon_{i+1}=1 \\ \left\langle a^{q}\right\rangle & \text { if } \varepsilon_{i+1}=-1\end{cases}
$$

- By induction $\widetilde{w}_{i+1, \ell-1}=\widetilde{w}_{\ell, j}=1$ in $F\left(\Sigma_{w}\right)$.

Proof of Lemma 3.

Let $w_{i, j} \in\langle a\rangle=A$. By Britton's Lemma,

$$
w_{i, j}=a^{k_{i}} t^{\varepsilon_{i+1}} w_{i+1, \ell-1} t^{\varepsilon_{\ell}} w_{\ell, j}
$$

with $\varepsilon_{\ell}=-\varepsilon_{i+1}, w_{\ell, j} \in A$, and

$$
w_{i+1, \ell-1} \in \begin{cases}\left\langle a^{p}\right\rangle & \text { if } \varepsilon_{i+1}=1 \\ \left\langle a^{q}\right\rangle & \text { if } \varepsilon_{i+1}=-1\end{cases}
$$

- By induction $\widetilde{w}_{i+1, \ell-1}=\widetilde{w}_{\ell, j}=1$ in $F\left(\Sigma_{w}\right)$.
- By Lemma $1, k_{i+1, \ell-1} \in p \mathbb{Z}$ (resp. $q \mathbb{Z}$).
$\rightsquigarrow i+1 \sim_{\mathcal{C}} \ell$ and $t_{[i+1]}^{\varepsilon_{i+1}}=t_{[\ell]}^{-\varepsilon_{\ell}}$.

Proof of Lemma 3.

Let $w_{i, j} \in\langle a\rangle=A$. By Britton's Lemma,

$$
w_{i, j}=a^{k_{i}} t^{\varepsilon_{i+1}} w_{i+1, \ell-1} t^{\varepsilon_{\ell}} w_{\ell, j}
$$

with $\varepsilon_{\ell}=-\varepsilon_{i+1}, w_{\ell, j} \in A$, and

$$
w_{i+1, \ell-1} \in \begin{cases}\left\langle a^{p}\right\rangle & \text { if } \varepsilon_{i+1}=1 \\ \left\langle a^{q}\right\rangle & \text { if } \varepsilon_{i+1}=-1\end{cases}
$$

- By induction $\widetilde{w}_{i+1, \ell-1}=\widetilde{w}_{\ell, j}=1$ in $F\left(\Sigma_{w}\right)$.
- By Lemma $1, k_{i+1, \ell-1} \in p \mathbb{Z}($ resp. $q \mathbb{Z})$.
$\rightsquigarrow i+1 \sim_{\mathcal{C}} \ell$ and $t_{[i+1]}^{\varepsilon_{i+1}}=t_{[\ell]}^{-\varepsilon_{\ell}}$.
Thus, $\widetilde{w}_{i, j}=t_{[i+1]}^{\varepsilon_{i+1}} \widetilde{w}_{i+1, \ell-1} t_{[i+1]}^{-\varepsilon_{i+1}} \widetilde{w}_{\ell, j}=1$ in $F\left(\Sigma_{w}\right)$.

The word problem of $\mathrm{BS}_{p, q}$
How to compute the color? Color $=\approx$-class.
On input w, compute \widetilde{w} :

How to compute the color? Color $=\approx$-class.
On input w, compute \widetilde{w} :

- For every index i compute the smallest j with $i \approx j$ as representative of [i]: by Lemma 2, two steps of $\sim_{\mathcal{C}}$ suffice.
- $i \sim_{\mathcal{C}} j$ can be checked in LOGSPACE (indeed TC ${ }^{0}$):

The word problem of $\mathrm{BS}_{p, q}$

How to compute the color? Color $=\approx$-class.
On input w, compute \widetilde{w} :

- For every index i compute the smallest j with $i \approx j$ as representative of [i]: by Lemma 2, two steps of $\sim_{\mathcal{C}}$ suffice.
- $i \sim_{\mathcal{C}} j$ can be checked in LOGSPACE (indeed TC ${ }^{0}$):
- check whether $\varepsilon_{i}=-\varepsilon_{j}$

The word problem of $\mathrm{BS}_{p, q}$

How to compute the color? Color $=\approx$-class.
On input w, compute \widetilde{w} :

- For every index i compute the smallest j with $i \approx j$ as representative of [i]: by Lemma 2, two steps of $\sim_{\mathcal{C}}$ suffice.
- $i \sim_{\mathcal{C}} j$ can be checked in LOGSPACE (indeed TC ${ }^{0}$):
- check whether $\varepsilon_{i}=-\varepsilon_{j}$
- compute $\sum_{\ell=i+1}^{j-1} \varepsilon_{\ell}$

The word problem of $\mathrm{BS}_{p, q}$

How to compute the color? Color $=\approx$-class.
On input w, compute \widetilde{w} :

- For every index i compute the smallest j with $i \approx j$ as representative of [i]: by Lemma 2, two steps of $\sim_{\mathcal{C}}$ suffice.
- $i \sim_{\mathcal{C}} j$ can be checked in LOGSPACE (indeed TC ${ }^{0}$):
- check whether $\varepsilon_{i}=-\varepsilon_{j}$
- compute $\sum_{\ell=i+1}^{j-1} \varepsilon_{\ell}$
- compute $k_{i, j-1}$

The word problem of $\mathrm{BS}_{p, q}$

How to compute the color? Color $=\approx$-class.
On input w, compute \widetilde{w} :

- For every index i compute the smallest j with $i \approx j$ as representative of [i]: by Lemma 2, two steps of $\sim_{\mathcal{C}}$ suffice.
- $i \sim_{\mathcal{C}} j$ can be checked in LOGSPACE (indeed TC ${ }^{0}$):
- check whether $\varepsilon_{i}=-\varepsilon_{j}$
- compute $\sum_{\ell=i+1}^{j-1} \varepsilon_{\ell}$
- compute $k_{i, j-1}$
- check whether $q \mid k_{i, j-1}\left(\right.$ resp. $\left.p \mid k_{i, j-1}\right)$

How to compute the color? Color $=\approx$-class.
On input w, compute \widetilde{w} :

- For every index i compute the smallest j with $i \approx j$ as representative of [i]: by Lemma 2, two steps of $\sim_{\mathcal{C}}$ suffice.
- $i \sim_{\mathcal{C}} j$ can be checked in LOGSPACE (indeed TC ${ }^{0}$):
- check whether $\varepsilon_{i}=-\varepsilon_{j}$
- compute $\sum_{\ell=i+1}^{j-1} \varepsilon_{\ell}$
- compute $k_{i, j-1}$
- check whether $q \mid k_{i, j-1}$ (resp. $p \mid k_{i, j-1}$)
\rightsquigarrow LOGSPACE-reduction to the word problem of $F\left(\Sigma_{w}\right) \leq F_{2}$.

How to compute the color? Color $=\approx$-class.
On input w, compute \widetilde{w} :

- For every index i compute the smallest j with $i \approx j$ as representative of [i]: by Lemma 2, two steps of $\sim_{\mathcal{C}}$ suffice.
- $i \sim_{c} j$ can be checked in LOGSPACE (indeed TC ${ }^{0}$):
- check whether $\varepsilon_{i}=-\varepsilon_{j}$
- compute $\sum_{\ell=i+1}^{j-1} \varepsilon_{\ell}$
- compute $k_{i, j-1}$
- check whether $q \mid k_{i, j-1}$ (resp. $p \mid k_{i, j-1}$)
\rightsquigarrow LOGSPACE-reduction to the word problem of $F\left(\Sigma_{w}\right) \leq F_{2}$.

Theorem (Lipton, Zalcstein)

The word problem of F_{2} is in LOGSPACE.

The word problem of $\mathrm{BS}_{p, q}$

How to compute the color? Color $=\approx$-class.
On input w, compute \widetilde{w} :

- For every index i compute the smallest j with $i \approx j$ as representative of [i]: by Lemma 2, two steps of $\sim_{\mathcal{C}}$ suffice.
- $i \sim_{\mathcal{C}} j$ can be checked in LOGSPACE (indeed TC ${ }^{0}$):
- check whether $\varepsilon_{i}=-\varepsilon_{j}$
- compute $\sum_{\ell=i+1}^{j-1} \varepsilon_{\ell}$
- compute $k_{i, j-1}$
- check whether $q \mid k_{i, j-1}$ (resp. $p \mid k_{i, j-1}$)
\rightsquigarrow LOGSPACE-reduction to the word problem of $F\left(\Sigma_{w}\right) \leq F_{2}$.

Theorem (Lipton, Zalcstein)

The word problem of F_{2} is in LOGSPACE.

Theorem (W., today)

The word problem of Baumslag-Solitar groups is in LOGSPACE.

Solving the conjugacy problem of $\mathbf{B S}_{p, q}$

Input: $v, w \in\{a, \bar{a}, t, \bar{t}\}^{*}$.
(1) Compute Britton-reduced words \hat{v}, \hat{w}.
(2) Compute cyclically Britton-reduced words \tilde{v}, \tilde{w}.
(3) Check whether $\tilde{v} \sim \tilde{w}$ using Collins' Lemma.

Solving the conjugacy problem of $\mathbf{B S}_{p, q}$

Input: $v, w \in\{a, \bar{a}, t, \bar{t}\}^{*}$.
(1) Compute Britton-reduced words \hat{v}, \hat{w}.
(2) Compute cyclically Britton-reduced words \tilde{v}, \tilde{w}.
(3) Check whether $\tilde{v} \sim \tilde{w}$ using Collins' Lemma.

Britton reductions in LOGSPACE:

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q}
$$

For $i=0, \ldots, n$

- Find the largest $j>i$ with $w_{i, j-1}=a^{k_{i, j-1}}$ in $\mathbf{B S}_{p, q}$,
- Output $a^{k_{i, j-1}} t^{\varepsilon_{j}}$,
- $i:=j$.

Solving the conjugacy problem of $\mathrm{BS}_{p, q}$

Input: $v, w \in\{a, \bar{a}, t, \bar{t}\}^{*}$.
(1) Compute Britton-reduced words \hat{v}, \hat{w}.
(2) Compute cyclically Britton-reduced words \tilde{v}, \tilde{w}.
(3) Check whether $\tilde{v} \sim \tilde{w}$ using Collins' Lemma.

Britton reductions in LOGSPACE:

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q},
$$

For $i=0, \ldots, n$

- Find the largest $j>i$ with $w_{i, j-1}=a^{k_{i, j-1}}$ in $\mathbf{B S}_{p, q}$,
- Output $a^{k_{i, j-1}} t^{\varepsilon_{j}}$,
- $i:=j$.

Example

$$
w=\bar{a} t a t a a \bar{t} a a \bar{t} t a \bar{t} t a t a \in \mathbf{B S}_{2,3}
$$

Output $=$

Solving the conjugacy problem of $\mathrm{BS}_{p, q}$

Input: $v, w \in\{a, \bar{a}, t, \bar{t}\}^{*}$.
(1) Compute Britton-reduced words \hat{v}, \hat{w}.
(2) Compute cyclically Britton-reduced words \tilde{v}, \tilde{w}.
(3) Check whether $\tilde{v} \sim \tilde{w}$ using Collins' Lemma.

Britton reductions in LOGSPACE:

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q},
$$

For $i=0, \ldots, n$

- Find the largest $j>i$ with $w_{i, j-1}=a^{k_{i, j-1}}$ in $\mathbf{B S}_{p, q}$,
- Output $a^{k_{i, j-1}} t^{\varepsilon_{j}}$,
- $i:=j$.

Example

$$
w={ }_{\uparrow} \bar{a} t a t \text { aa } \bar{t} \text { aa } \bar{t} t a \bar{t} t a t a \in \mathbf{B S}_{2,3}
$$

Output $=$

Solving the conjugacy problem of $\mathrm{BS}_{p, q}$

Input: $v, w \in\{a, \bar{a}, t, \bar{t}\}^{*}$.
(1) Compute Britton-reduced words \hat{v}, \hat{w}.
(2) Compute cyclically Britton-reduced words \tilde{v}, \tilde{w}.
(3) Check whether $\tilde{v} \sim \tilde{w}$ using Collins' Lemma.

Britton reductions in LOGSPACE:

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q},
$$

For $i=0, \ldots, n$

- Find the largest $j>i$ with $w_{i, j-1}=a^{k_{i, j-1}}$ in $\mathbf{B S}_{p, q}$,
- Output $a^{k_{i, j-1}} t^{\varepsilon_{j}}$,
- $i:=j$.

Example

$$
w=\underset{\uparrow}{\bar{a} t a t} a a \bar{t} a a \bar{t} t a \bar{t} t a t a \in \mathbf{B S}_{2,3}
$$

Output $=$

Solving the conjugacy problem of $\mathrm{BS}_{p, q}$

Input: $v, w \in\{a, \bar{a}, t, \bar{t}\}^{*}$.
(1) Compute Britton-reduced words \hat{v}, \hat{w}.
(2) Compute cyclically Britton-reduced words \tilde{v}, \tilde{w}.
(3) Check whether $\tilde{v} \sim \tilde{w}$ using Collins' Lemma.

Britton reductions in LOGSPACE:

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q},
$$

For $i=0, \ldots, n$

- Find the largest $j>i$ with $w_{i, j-1}=a^{k_{i, j-1}}$ in $\mathbf{B S}_{p, q}$,
- Output $a^{k_{i, j-1}} t^{\varepsilon_{j}}$,
- $i:=j$.

Example

$$
\begin{aligned}
w & =\underset{\uparrow}{\bar{a} t a t a a \bar{t} a a \bar{t} t} \underset{\uparrow}{t} a \bar{t} t a t a \in \mathbf{B S}_{2,3} \\
\text { Output } & =a^{8} t
\end{aligned}
$$

Solving the conjugacy problem of $\mathrm{BS}_{p, q}$

Input: $v, w \in\{a, \bar{a}, t, \bar{t}\}^{*}$.
(1) Compute Britton-reduced words \hat{v}, \hat{w}.
(2) Compute cyclically Britton-reduced words \tilde{v}, \tilde{w}.
(3) Check whether $\tilde{v} \sim \tilde{w}$ using Collins' Lemma.

Britton reductions in LOGSPACE:

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q},
$$

For $i=0, \ldots, n$

- Find the largest $j>i$ with $w_{i, j-1}=a^{k_{i, j-1}}$ in $\mathbf{B S}_{p, q}$,
- Output $a^{k_{i, j-1}} t^{\varepsilon_{j}}$,
- $i:=j$.

Example

$$
\begin{aligned}
w & =\bar{a} t a t a a \bar{t} a a \bar{t} t \underset{\uparrow}{t} \bar{t} t a t a \in \mathbf{B S}_{2,3} \\
\text { Output } & =a^{8} t
\end{aligned}
$$

Solving the conjugacy problem of $\mathrm{BS}_{p, q}$

Input: $v, w \in\{a, \bar{a}, t, \bar{t}\}^{*}$.
(1) Compute Britton-reduced words \hat{v}, \hat{w}.
(2) Compute cyclically Britton-reduced words \tilde{v}, \tilde{w}.
(3) Check whether $\tilde{v} \sim \tilde{w}$ using Collins' Lemma.

Britton reductions in LOGSPACE:

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q},
$$

For $i=0, \ldots, n$

- Find the largest $j>i$ with $w_{i, j-1}=a^{k_{i, j-1}}$ in $\mathbf{B S}_{p, q}$,
- Output $a^{k_{i, j-1}} t^{\varepsilon_{j}}$,
- $i:=j$.

Example

$$
\begin{aligned}
w & =\bar{a} t a t a a \bar{t} a a \bar{t} t \underset{\uparrow}{t} a \bar{t} t a t a \in \mathbf{B S}_{2,3} \\
\text { Output } & =a^{8} t
\end{aligned}
$$

Solving the conjugacy problem of $\mathrm{BS}_{p, q}$

Input: $v, w \in\{a, \bar{a}, t, \bar{t}\}^{*}$.
(1) Compute Britton-reduced words \hat{v}, \hat{w}.
(2) Compute cyclically Britton-reduced words \tilde{v}, \tilde{w}.
(3) Check whether $\tilde{v} \sim \tilde{w}$ using Collins' Lemma.

Britton reductions in LOGSPACE:

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q},
$$

For $i=0, \ldots, n$

- Find the largest $j>i$ with $w_{i, j-1}=a^{k_{i, j-1}}$ in $\mathbf{B S}_{p, q}$,
- Output $a^{k_{i, j-1}} t^{\varepsilon_{j}}$,
- $i:=j$.

Example

$$
\begin{aligned}
w & =\bar{a} t a t a a \bar{t} a a \bar{t} t \underset{\uparrow}{t} a \bar{t} t a t a \in \mathbf{B S}_{2,3} \\
\text { Output } & =a^{8} t \text { aat }
\end{aligned}
$$

Solving the conjugacy problem of $\mathrm{BS}_{p, q}$

Input: $v, w \in\{a, \bar{a}, t, \bar{t}\}^{*}$.
(1) Compute Britton-reduced words \hat{v}, \hat{w}.
(2) Compute cyclically Britton-reduced words \tilde{v}, \tilde{w}.
(3) Check whether $\tilde{v} \sim \tilde{w}$ using Collins' Lemma.

Britton reductions in LOGSPACE:

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q},
$$

For $i=0, \ldots, n$

- Find the largest $j>i$ with $w_{i, j-1}=a^{k_{i, j-1}}$ in $\mathbf{B S}_{p, q}$,
- Output $a^{k_{i, j-1}} t^{\varepsilon_{j}}$,
- $i:=j$.

Example

$$
\begin{aligned}
w & =\bar{a} t a t \text { aa } \bar{t} a a \bar{t} t a \bar{t} t a t a a_{\uparrow} \in \mathbf{B S}_{2,3} \\
\text { Output } & =a^{8} t \text { aat }
\end{aligned}
$$

Solving the conjugacy problem of $\mathrm{BS}_{p, q}$

Input: $v, w \in\{a, \bar{a}, t, \bar{t}\}^{*}$.
(1) Compute Britton-reduced words \hat{v}, \hat{w}.
(2) Compute cyclically Britton-reduced words \tilde{v}, \tilde{w}.
(3) Check whether $\tilde{v} \sim \tilde{w}$ using Collins' Lemma.

Britton reductions in LOGSPACE:

$$
w=a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q},
$$

For $i=0, \ldots, n$

- Find the largest $j>i$ with $w_{i, j-1}=a^{k_{i, j-1}}$ in $\mathbf{B S}_{p, q}$,
- Output $a^{k_{i, j-1}} t^{\varepsilon_{j}}$,
- $i:=j$.

Example

$$
\begin{aligned}
w & =\bar{a} t a t \text { aa } \bar{t} a a \bar{t} t a \bar{t} t a t a_{\uparrow} \in \mathbf{B S}_{2,3} \\
\text { Output } & =a^{8} t \text { aat } a
\end{aligned}
$$

Solving the conjugacy problem of $\mathrm{BS}_{p, q}$

Let $g=a^{k} \in\langle a\rangle$. Then

$$
\begin{aligned}
\operatorname{aga} a^{-1} & =g, \\
t g t^{-1} & =\operatorname{ta}^{k} t^{-1} \begin{cases}=a^{\frac{q}{p} k} & \text { if } p \mid k \\
\text { is Britton reduced } & \text { otherwise. }\end{cases}
\end{aligned}
$$

Thus, for $k \neq \ell$:

$$
\begin{aligned}
& a^{k} \sim a^{\ell} \Longleftrightarrow \exists j \in \mathbb{Z} \text { such that } k \cdot\left(\frac{q}{p}\right)^{j}=\ell \\
& \text { and }\left\{\begin{array}{l}
k \in p \mathbb{Z}, \ell \in q \mathbb{Z}, \\
k \in q \mathbb{Z}, \ell \in p \mathbb{Z}, \\
k \in 0
\end{array}\right. \\
& \text { otherwise. }
\end{aligned}
$$

There are only polynomially many possibilities for j
\rightsquigarrow check them all in parallel.

Corollary

It can be checked in TC ${ }^{0}$ whether $a^{k} \sim a^{\ell}$.

Lemma (Collin's Lemma for HNN extensions)

Let $v, w \in\{a, \bar{a}, t, \bar{t}\}^{*}$ be

- cyclically Britton-reduced,
- $v, w \notin\langle a\rangle$.

Then
$v \sim w \Longleftrightarrow$ there is a cyclic permutation w^{\prime} of w and $x \in \mathbb{Z}$ such that $v=a^{x} w^{\prime} a^{-x}$.

Solving the conjugacy problem of $\mathbf{B S}_{p, q}$

- Test all cyclic permutations in parallel
- For

$$
\begin{aligned}
w^{\prime} & =a^{k_{0}} t^{\varepsilon_{1}} a^{k_{1}} \cdots t^{\varepsilon_{n}} a^{k_{n}} \in \mathbf{B S}_{p, q}, \\
v & =a^{\ell_{0}} t^{\varepsilon_{1}} a^{\ell_{1}} \cdots t^{\varepsilon_{n}} a^{\ell_{n}} \in \mathbf{B S}_{p, q},
\end{aligned}
$$

the existence of $x \in \mathbb{Z}$ with $v=a^{x} w^{\prime} a^{-x}$ reduces to finding an integral solution x, y_{1}, \ldots, y_{n} for the system of equations

$$
\begin{aligned}
y_{i} & =\frac{1}{\alpha_{i}}\left(x \cdot \prod_{\mu=1}^{i-1}\left(\frac{p}{q}\right)^{\varepsilon_{\mu}}+\sum_{\nu=1}^{i-1}\left(k_{\nu}-\ell_{\nu}\right) \cdot \prod_{\mu=\nu+1}^{i-1}\left(\frac{p}{q}\right)^{\varepsilon_{\mu}}\right) \\
x & =k_{n}-\ell_{n}+x \cdot \prod_{\mu=1}^{n}\left(\frac{p}{q}\right)^{\varepsilon_{\mu}}+\sum_{\nu=1}^{n-1}\left(k_{\nu}-\ell_{\nu}\right) \cdot \prod_{\mu=\nu+1}^{n}\left(\frac{p}{q}\right)^{\varepsilon_{\mu}}
\end{aligned}
$$

- Can be done in TC ${ }^{0}$.

Conjugacy in Baumslag-Solitar groups

Theorem (W.)

Let G be a Baumslag-Solitar group. Then the conjugacy problem of G is

- TC^{0}-complete if $G=\mathbf{B S}_{1, p}$ is a solvable Baumslag-Solitar group,
- in LOGSPACE, otherwise.

Generalized Baumslag-Solitar groups

A generalized Baumslag-Solitar group (GBS group) is a

- fundamental group of a finite graph of groups
- with infinite cyclic vertex and edge groups.

A GBS group G is given by a graph of groups \mathcal{G} :

- an undirected graph (V, E)
(with involution ${ }^{-}: E \rightarrow E, \iota(t)$ the initial, $\tau(t)$ the terminal vertex of $t \in E$),
- $\alpha_{t}, \beta_{t} \in \mathbb{Z} \backslash\{0\}$ for $t \in E$ such that $\alpha_{t}=\beta_{\bar{t}}$.

Generalized Baumslag-Solitar groups

A generalized Baumslag-Solitar group (GBS group) is a

- fundamental group of a finite graph of groups
- with infinite cyclic vertex and edge groups.

A GBS group G is given by a graph of groups \mathcal{G} :

- an undirected graph (V, E) (with involution ${ }^{-}: E \rightarrow E, \iota(t)$ the initial, $\tau(t)$ the terminal vertex of $t \in E$),
- $\alpha_{t}, \beta_{t} \in \mathbb{Z} \backslash\{0\}$ for $t \in E$ such that $\alpha_{t}=\beta_{\bar{t}}$.
$F(\mathcal{G})=\langle V, E| \bar{t} t=1, t b^{\beta_{t}} \bar{t}=a^{\alpha_{t}}$ for $\left.t \in E, a=\iota(t), b=\tau(t)\right\rangle$

Generalized Baumslag-Solitar groups

A generalized Baumslag-Solitar group (GBS group) is a

- fundamental group of a finite graph of groups
- with infinite cyclic vertex and edge groups.

A GBS group G is given by a graph of groups \mathcal{G} :

- an undirected graph (V, E) (with involution ${ }^{-}: E \rightarrow E, \iota(t)$ the initial, $\tau(t)$ the terminal vertex of $t \in E$),
- $\alpha_{t}, \beta_{t} \in \mathbb{Z} \backslash\{0\}$ for $t \in E$ such that $\alpha_{t}=\beta_{\bar{t}}$.

$$
\left.F(\mathcal{G})=\langle V, E| \bar{t} t=1, t b^{\beta_{t}} \bar{t}=a^{\alpha_{t}} \text { for } t \in E, a=\iota(t), b=\tau(t)\right\rangle
$$

Fix a vertex $a \in V: G=\pi_{1}(\mathcal{G}, a) \leq F(\mathcal{G})$

$$
G=\left\{a_{0} t_{1} a_{1} \cdots t_{n} a_{n} \mid t_{i} \in E, a_{i}=\tau\left(t_{i}\right)=\iota\left(t_{i+1}\right), a_{0}=a_{n}=a\right\}
$$

$=$ "all closed paths starting at a."

Generalized Baumslag-Solitar groups

Example

$$
\mathbf{B S}_{p, q} \text { (a) } \frac{p}{q} \mathrm{t}
$$

Generalized Baumslag-Solitar groups

Example

$$
\mathbf{B S}_{p, q} \text { (a) } \frac{p}{q} \mathrm{t}
$$

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, \operatorname{ta}^{12} \bar{t}=a^{5}\right\rangle
$$

Word and Conjugacy Problem in GBS groups

- Word problem
- Britton reductions
- Conjugacy for cyclically reduced words $u, v \notin\langle a\rangle$
work all as for ordinary Baumslag-Solitar groups.
\rightsquigarrow everything in LOGSPACE

Word and Conjugacy Problem in GBS groups

- Word problem
- Britton reductions
- Conjugacy for cyclically reduced words $u, v \notin\langle a\rangle$
work all as for ordinary Baumslag-Solitar groups.
\rightsquigarrow everything in LOGSPACE
- But: Conjugacy for cyclically reduced words $u, v \in\langle a\rangle$ does not work as for ordinary Baumslag-Solitar groups.

Remember:

$$
a^{k} \sim a^{\ell} \text { in } \mathbf{B S}_{p, q} \Longleftrightarrow \exists j \in \mathbb{Z} \text { with } k \cdot\left(\frac{q}{p}\right)^{j}=\ell \text { and } \ldots
$$

Now: more than polynomially many potential conjugating elements.

Word and Conjugacy Problem in GBS groups

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

$$
a^{15} \sim a^{16} ?
$$

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

$$
\begin{aligned}
a^{15} & \sim a^{16} ? \\
\bar{t} a^{15} t & =a^{36}
\end{aligned}
$$

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

$$
\begin{aligned}
a^{15} & \sim a^{16} ? \\
\bar{s} \bar{t} a^{15} t s & =\bar{s} a^{36} s \\
& =a^{24}
\end{aligned}
$$

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

$$
\begin{aligned}
a^{15} & \sim a^{16} ? \\
\overline{s s} \bar{t} a^{15} t s s & =\overline{s s} a^{36} s s \\
& =a^{16}
\end{aligned}
$$

Word and Conjugacy Problem in GBS groups

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

$$
a^{15} \sim a^{17} ?
$$

Word and Conjugacy Problem in GBS groups

Example

$$
\begin{array}{r}
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle \\
S \\
a^{15} \sim a^{17} ?
\end{array}
$$

$$
\begin{aligned}
& \qquad a^{15} \sim a^{17} ? \\
& \text { no, cannot "create" a } \\
& \text { prime factor } 17
\end{aligned}
$$

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

$$
\begin{aligned}
& \qquad a^{15} \sim a^{17} ? \\
& \text { no, cannot "create" a } \\
& \text { prime factor } 17
\end{aligned}
$$

Question: $a^{k} \sim a^{\ell}$? Write $k=r_{k} \cdot 2^{c} \cdot 3^{d} \cdot 5^{e}$,

$$
a a^{k} \bar{a}=a^{k}
$$

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

$$
a^{15} \sim a^{17} ?
$$

no, cannot "create" a prime factor 17

Question: $a^{k} \sim a^{l}$? Write $k=r_{k} \cdot 2^{c} \cdot 3^{d} \cdot 5^{e}$,

$$
a a^{k} \bar{a}=a^{k}, \quad r a^{k} \bar{r}=a^{r_{k} \cdot 2^{c+1} \cdot 3^{d} \cdot 5^{e}},
$$

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

$$
a^{15} \sim a^{17} ?
$$

no, cannot "create" a prime factor 17

Question: $a^{k} \sim a^{l}$? Write $k=r_{k} \cdot 2^{c} \cdot 3^{d} \cdot 5^{e}$,

$$
\begin{array}{ll}
a a^{k} \bar{a}=a^{k}, & r a^{k} \bar{r}=a^{r_{k} \cdot 2^{c+1} \cdot 3^{d} \cdot 5^{e}}, \\
s a^{k} \bar{s}=a^{r_{k} \cdot 2^{c-1} \cdot 3^{d+1} \cdot 5^{e}} &
\end{array}
$$

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

$$
a^{15} \sim a^{17} ?
$$

no, cannot "create" a prime factor 17

Question: $a^{k} \sim a^{l}$? Write $k=r_{k} \cdot 2^{c} \cdot 3^{d} \cdot 5^{e}$,

$$
\begin{array}{ll}
a a^{k} \bar{a}=a^{k}, & r a^{k} \bar{r}=a^{r_{k} \cdot 2^{c+1} \cdot 3^{d} \cdot 5^{e}}, \\
s a^{k} \bar{s}=a^{r_{k} \cdot 2^{c-1} \cdot 3^{d+1} \cdot 5^{e}}, & t a^{k} \bar{t}=a^{r_{k} \cdot 2^{c-2} \cdot 3^{d-1} \cdot 5^{e+1}} .
\end{array}
$$

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

$$
a^{15} \sim a^{17} ?
$$

no, cannot "create" a prime factor 17

Question: $a^{k} \sim a^{l}$? Write $k=r_{k} \cdot 2^{c} \cdot 3^{d} \cdot 5^{e}$,

$$
\begin{array}{ll}
a a^{k} \bar{a}=a^{k}, & r a^{k} \bar{r}=a^{r_{k} \cdot 2^{c+1} \cdot 3^{d} \cdot 5^{e}}, \\
s a^{k} \bar{s}=a^{r_{k} \cdot 2^{c-1} \cdot 3^{d+1} \cdot 5^{e}}, & t a^{k} \bar{t}=a^{r_{k} \cdot 2^{c-2} \cdot 3^{d-1} \cdot 5^{e+1}} .
\end{array}
$$

\rightsquigarrow suffices to consider (c, d, e).

Word and Conjugacy Problem in GBS groups

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

+ inverse transitions

Word and Conjugacy Problem in GBS groups

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

+ inverse transitions
$(0,1,1)$

Word and Conjugacy Problem in GBS groups

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

+ inverse transitions

$$
\begin{array}{cc}
a^{15} & (0,1,1) \\
\bar{t} a^{15} t & (2,2,0)
\end{array}
$$

Word and Conjugacy Problem in GBS groups

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

+ inverse transitions

a^{15}	$(0,1,1)$
$\bar{t} a^{15} t$	$(2,2,0)$
$\bar{s} \bar{t} a^{15} t s$	$(3,1,0)$

Example

$$
G=F(\mathcal{G})=\left\langle a, r, s, t \mid r a \bar{r}=a^{2}, s a^{2} \bar{s}=a^{3}, t a^{12} \bar{t}=a^{5}\right\rangle
$$

+ inverse transitions

$$
\begin{array}{rr}
a^{15} & (0,1,1) \\
\bar{t} a^{15} t & (2,2,0) \\
\bar{s} \bar{t} a^{15} t s & (3,1,0) \\
a^{16}=\overline{s s} \bar{t} a^{15} t s s & (4,0,0)
\end{array}
$$

Word and Conjugacy Problem in GBS groups

Question: $a^{k} \sim a^{l}$?
Let $\mathcal{P}=\left\{\right.$ primes occurring in $\left.\alpha_{t}, \beta_{t}(t, \in E)\right\}$.

$$
k=r_{k} \cdot \prod_{p \in \mathcal{P}} p^{e_{p}(k)}, \quad \ell=r_{\ell} \cdot \prod_{p \in \mathcal{P}} p^{e_{p}(\ell)}
$$

If $r_{k} \neq r_{\ell}$, then $a^{k} \nsim a^{\ell}$. Otherwise,

$$
a^{k} \sim a^{\ell} \Longleftrightarrow\left(e_{p}(k)\right)_{p \in \mathcal{P}} \approx\left(e_{p}(\ell)\right)_{p \in \mathcal{P}}
$$

$\approx=$ congruence on $\mathbb{N}^{\mathcal{P}}$ generated by $\left(e_{p}\left(\alpha_{t}\right)\right)_{p \in \mathcal{P}} \approx\left(e_{p}\left(\beta_{t}\right)\right)_{p \in \mathcal{P}}$ for $t \in E$.

Word and Conjugacy Problem in GBS groups

Question: $a^{k} \sim a^{\ell}$?
Let $\mathcal{P}=\left\{\right.$ primes occurring in $\left.\alpha_{t}, \beta_{t}(t, \in E)\right\}$.

$$
k=r_{k} \cdot \prod_{p \in \mathcal{P}} p^{e_{p}(k)}, \quad \ell=r_{\ell} \cdot \prod_{p \in \mathcal{P}} p^{e_{p}(\ell)}
$$

If $r_{k} \neq r_{\ell}$, then $a^{k} \nsim a^{\ell}$. Otherwise,

$$
a^{k} \sim a^{\ell} \Longleftrightarrow\left(e_{p}(k)\right)_{p \in \mathcal{P}} \approx\left(e_{p}(\ell)\right)_{p \in \mathcal{P}}
$$

$\approx=$ congruence on $\mathbb{N}^{\mathcal{P}}$ generated by $\left(e_{p}\left(\alpha_{t}\right)\right)_{p \in \mathcal{P}} \approx\left(e_{p}\left(\beta_{t}\right)\right)_{p \in \mathcal{P}}$ for $t \in E$.

Theorem (Ballantyne, Lankford, 1981)

There is a weight-reducing, confluent rewriting system for \approx.
Writing down $\left(e_{p}(k)\right)_{p \in \mathcal{P}}$ takes space $\mathcal{O}(\log \log k)$.
Greedy application of rewriting rules \rightsquigarrow LOGSPACE.

Conjugacy in GBS groups

Theorem (W.)
 Let $G=\pi_{1}(\mathcal{G})$ be a generalized Baumslag-Solitar group. Then the conjugacy problem of G is in LOGSPACE.

Uniform Conjugacy in GBS groups

Input:

- a finite graph of groups \mathcal{G} consisting of
- (V, E),
- $\alpha_{t}, \beta_{t} \in \mathbb{Z} \backslash\{0\}$ for $t \in E$ given in binary,
- two words $v, w \in \pi_{1}(\mathcal{G})$

Question: $v \sim w$ in $\pi_{1}(\mathcal{G})$.

Theorem (W.)

The uniform conjugacy problem for GBS groups is EXPSPACE-hard.

Proof.

The uniform reachability problem for symmetric Petri nets is EXPSPACE-complete (Mayr, Meyer, 1982).

More General

Fundamental groups of finite graphs of groups with free abelian vertex and edge groups:

Conjecture

Word problem is in DET (i.e. NC 1-reducible to integer determinant, iterated matrix product, or matrix powering).

Theorem (Bogopolski, Martino, Ventura, 2010)

Conjugacy problem is undecidable in general.

Theorem (Diekert, Miasnikov, W., 2015)

Conjugacy problem is strongly generically in P (except special case).

- The word and conjugacy problem of generalized Baumslag-Solitar groups is in LOGSPACE.
- Conjecture: The uniform conjugacy problem for GBS groups is EXPSPACE-complete.
- Conjecture: The word problem of fundamental groups of finite graphs of groups with free abelian vertex and edge groups is in DET.
- The word and conjugacy problem of generalized Baumslag-Solitar groups is in LOGSPACE.
- Conjecture: The uniform conjugacy problem for GBS groups is EXPSPACE-complete.
- Conjecture: The word problem of fundamental groups of finite graphs of groups with free abelian vertex and edge groups is in DET.

Thank you!

