The power word problem in free groups

Armin Weiß¹

Universität Stuttgart, FMI

Schloss Dagstuhl, March, 2019

¹Joint work with Markus Lohrey

Armin Weiß

Let G be a f.g. group, generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

- ► Word problem (WP): Given $w \in \Sigma^*$. Question: Is w = 1 in G?
- Conjugacy problem: Given $v, w \in \Sigma^*$. Question: $\exists z \in G$ such that $zvz^{-1} = w$?

Let G be a f.g. group, generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

- ► Word problem (WP): Given $w \in \Sigma^*$. Question: Is w = 1 in G?
- ► Conjugacy problem: Given $v, w \in \Sigma^*$. Question: $\exists z \in G$ such that $zvz^{-1} = w$?
- Compressed word problem: Given a straight-line program G which produces a word w ∈ Σ*.

Question: Is w = 1 in G?

Let G be a f.g. group, generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

- ► Word problem (WP): Given $w \in \Sigma^*$. Question: Is w = 1 in G?
- ► Conjugacy problem: Given $v, w \in \Sigma^*$. Question: $\exists z \in G$ such that $zvz^{-1} = w$?
- Compressed word problem: Given a straight-line program G which produces a word w ∈ Σ*.

Question: Is w = 1 in G?

► Knapsack problem: Given $p_1, ..., p_k, w \in \Sigma^*$. Question: $\exists x_1, ..., x_k \in \mathbb{N}$ such that $p_1^{x_1} \cdots p_k^{x_k} = w$?

Let G be a f.g. group, generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

- ► Word problem (WP): Given $w \in \Sigma^*$. Question: Is w = 1 in G?
- Conjugacy problem: Given $v, w \in \Sigma^*$. Question: $\exists z \in G$ such that $zvz^{-1} = w$?
- Compressed word problem: Given a straight-line program G which produces a word w ∈ Σ*.

Question: Is w = 1 in G?

- ► Knapsack problem: Given $p_1, ..., p_k, w \in \Sigma^*$. Question: $\exists x_1, ..., x_k \in \mathbb{N}$ such that $p_1^{x_1} \cdots p_k^{x_k} = w$?
- Power word problem (POWERWP): Given $p_1, \ldots, p_k \in \Sigma^*$ and $x_1, \ldots, x_k \in \mathbb{Z}$. Question: $p_1^{x_1} \cdots p_k^{x_k} = 1$ in G?

▶ ...

The power word problem is natural:

straightforward way of compression

- straightforward way of compression
- for abelian groups this is the usual way of encoding

- straightforward way of compression
- for abelian groups this is the usual way of encoding
- in nilpotent groups, every element can be expressed by a power word of logarithmic length

- straightforward way of compression
- for abelian groups this is the usual way of encoding
- in nilpotent groups, every element can be expressed by a power word of logarithmic length
- binary encoded matrices in SL(2, Z) yield power words over the generators (Gurevich, Schupp 07)

- straightforward way of compression
- for abelian groups this is the usual way of encoding
- in nilpotent groups, every element can be expressed by a power word of logarithmic length
- binary encoded matrices in SL(2, Z) yield power words over the generators (Gurevich, Schupp 07)

$$\begin{pmatrix} -499 & 5000 \\ -50 & 501 \end{pmatrix}$$

- straightforward way of compression
- for abelian groups this is the usual way of encoding
- in nilpotent groups, every element can be expressed by a power word of logarithmic length
- binary encoded matrices in SL(2, Z) yield power words over the generators (Gurevich, Schupp 07)

$$\begin{pmatrix} -499 & 5000 \\ -50 & 501 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{10} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{50} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{-10}$$

The power word problem is natural:

- straightforward way of compression
- for abelian groups this is the usual way of encoding
- in nilpotent groups, every element can be expressed by a power word of logarithmic length
- binary encoded matrices in SL(2, Z) yield power words over the generators (Gurevich, Schupp 07)

$$\begin{pmatrix} -499 & 5000 \\ -50 & 501 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{10} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{50} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{-10}$$

The power word problem helps

- ▶ to solve the knapsack problem in RAAGS (Lohrey, Zetsche, 15), ...
- to understand the compressed word problem better:
 - Iower bounds
 - better upper bounds in the special case.

Why parallel complexity?

Finer classification of problems inside polynomial time.

Why parallel complexity?

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.

Why parallel complexity?

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.
- Parallel computing is more and more important in the "real world".

Machine models:

- PRAMs (parallel random access machines)
- ▶ (Boolean) circuits

Machine models:

- PRAMs (parallel random access machines)
- (Boolean) circuits

Circuit = directed acyclic graph where each vertex is either:

- input gates (has only outgoing edges)
- Boolean gates (and ∧, or ∨, not ¬ having incoming and outgoing edges)
- output gates (only incoming edges)

Machine models:

- PRAMs (parallel random access machines)
- (Boolean) circuits

 $\label{eq:circuit} \mbox{Circuit} = \mbox{directed} \mbox{ acyclic graph where each vertex is either:}$

- input gates (has only outgoing edges)
- Boolean gates (and ∧, or ∨, not ¬ having incoming and outgoing edges)
- output gates (only incoming edges)

Machine models:

- PRAMs (parallel random access machines)
- (Boolean) circuits

Circuit = directed acyclic graph where each vertex is either:

- input gates (has only outgoing edges)
- Boolean gates (and ∧, or ∨, not ¬ having incoming and outgoing edges)
- output gates (only incoming edges)

size = number of gates

depth = longest path from input to output gate

fan-in = number of input-wires per gate

NC = problems which can be solved by a family of circuits of polynomial size and polylogarithmic depth and bounded fan-in.

Inside NC:

NCⁱ = solved by a family of circuits of depth O(logⁱ n) and polynomial size with bounded fan-in (= in-degree) ¬, ∧, ∨ gates.

Inside NC:

NCⁱ = solved by a family of circuits of depth O(logⁱ n) and polynomial size with bounded fan-in (= in-degree) ¬, ∧, ∨ gates.

Infinite hierarchy:

$$\mathsf{NC}^1 \subseteq \mathsf{NC}^2 \subseteq \mathsf{NC}^3 \subseteq \cdots \subseteq \mathsf{NC} \subseteq \mathsf{P}.$$

Inside NC:

NCⁱ = solved by a family of circuits of depth O(logⁱ n) and polynomial size with bounded fan-in (= in-degree) ¬, ∧, ∨ gates.

Infinite hierarchy:

$$\mathsf{NC}^1 \subseteq \mathsf{LOGSPACE} \subseteq \mathsf{NC}^2 \subseteq \mathsf{NC}^3 \subseteq \cdots \subseteq \mathsf{NC} \subseteq \mathsf{P}.$$

Inside NC:

NCⁱ = solved by a family of circuits of depth O(logⁱ n) and polynomial size with bounded fan-in (= in-degree) ¬, ∧, ∨ gates.

Infinite hierarchy:

$$\mathsf{NC}^1 \subseteq \mathsf{LOGSPACE} \subseteq \mathsf{NC}^2 \subseteq \mathsf{NC}^3 \subseteq \cdots \subseteq \mathsf{NC} \subseteq \mathsf{P}.$$

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)

The word problem of linear groups is in LOGSPACE.

Inside NC:

NCⁱ = solved by a family of circuits of depth O(logⁱ n) and polynomial size with bounded fan-in (= in-degree) ¬, ∧, ∨ gates.

Infinite hierarchy:

$$\mathsf{AC}^0 \subsetneq \qquad \mathsf{NC}^1 \subseteq \mathsf{LOGSPACE} \subseteq \mathsf{NC}^2 \subseteq \mathsf{NC}^3 \subseteq \cdots \subseteq \mathsf{NC} \subseteq \mathsf{P}.$$

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)

The word problem of linear groups is in LOGSPACE.

Inside NC¹:

AC⁰ = solved by a family of circuits of constant depth and polynomial size with unbounded fan-in ¬, ∧, ∨ gates.

Inside NC:

NCⁱ = solved by a family of circuits of depth O(logⁱ n) and polynomial size with bounded fan-in (= in-degree) ¬, ∧, ∨ gates.

Infinite hierarchy:

 $\mathsf{AC}^0 \subsetneq \mathsf{TC}^0 \subseteq \mathsf{NC}^1 \subseteq \mathsf{LOGSPACE} \subseteq \mathsf{NC}^2 \subseteq \mathsf{NC}^3 \subseteq \cdots \subseteq \mathsf{NC} \subseteq \mathsf{P}.$

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)

The word problem of linear groups is in LOGSPACE.

Inside NC¹:

AC⁰ = solved by a family of circuits of constant depth and polynomial size with unbounded fan-in ¬, ∧, ∨ gates.

▶ TC⁰ allows additionally majority gates: Maj(w) = 1 iff $|w|_1 \ge |w|_0$ for $w \in \{0, 1\}^*$.

Word problem of $\ensuremath{\mathbb{Z}}$

The word problem of \mathbb{Z} with generators $\{+1, -1\}$ is in TC⁰.

The word problem of \mathbb{Z} with generators $\{+1, -1\}$ is in TC⁰.

Use 0 to encode -1 and 1 for 1.

The word problem of \mathbb{Z} with generators $\{+1, -1\}$ is in TC⁰.

Use 0 to encode -1 and 1 for 1. Let $w \in \{0, 1\}^*$,

$$w$$
 represents 0 in $\mathbb{Z} \iff |w|_1 = |w|_0$
 $\iff \operatorname{Maj}(w) \land \operatorname{Maj}(\neg w)$

The word problem of \mathbb{Z} with generators $\{+1, -1\}$ is in TC⁰.

Use 0 to encode -1 and 1 for 1. Let $w \in \{0,1\}^*$,

$$w ext{ represents 0 in } \mathbb{Z} \iff |w|_1 = |w|_0$$

 $\iff ext{Maj}(w) \land ext{Maj}(\neg w)$

The word problem of \mathbb{Z} with generators $\{+1, -1\}$ is in TC⁰.

Use 0 to encode -1 and 1 for 1. Let $w \in \{0, 1\}^*$,

$$w ext{ represents 0 in } \mathbb{Z} \iff |w|_1 = |w|_0 \ \iff \operatorname{Maj}(w) \land \operatorname{Maj}(\neg w)$$

Theorem (Myasnikov, W. 2017, Lohrey, W.)

If G is f.g. nilpotent or $G = H \wr \mathbb{Z}$ for H f.g. abelian, then POWERWP(G) is in TC^0 .

- For a formal language L ⊆ {0,1}*, AC⁰(L) allows additionally oracle gates for L.
- ▶ $L' \in AC^0(L)$ means L' is AC^0 -(Turing)-reducible to L.

- For a formal language L ⊆ {0,1}*, AC⁰(L) allows additionally oracle gates for L.
- ▶ $L' \in AC^0(L)$ means L' is AC^0 -(Turing)-reducible to L.
- Every problem in TC⁰ is AC⁰-reducible to Majority.
 Majority is TC⁰-complete.

- For a formal language L ⊆ {0,1}*, AC⁰(L) allows additionally oracle gates for L.
- ▶ $L' \in AC^0(L)$ means L' is AC^0 -(Turing)-reducible to L.
- Every problem in TC⁰ is AC⁰-reducible to Majority.
 Majority is TC⁰-complete.
- ► $\mathsf{TC}^0 = \mathsf{AC}^0(\mathrm{WP}(\mathbb{Z})) \subseteq \mathsf{AC}^0(\mathrm{WP}(F_2))$
- ► $AC^0(WP(F_2)) \subseteq LOGSPACE$

- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).
- WP(F_k) is NC¹-hard for $k \ge 2$ (Robinson, 1993).

- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).
- WP(F_k) is NC¹-hard for $k \ge 2$ (Robinson, 1993).
- The compressed word problem is P-complete for $k \ge 2$ (Lohrey).

- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).
- WP(F_k) is NC¹-hard for $k \ge 2$ (Robinson, 1993).
- The compressed word problem is P-complete for $k \ge 2$ (Lohrey).

Theorem (Lohrey, W.)

The power word problem for free groups is in $AC^{0}(WP(F_{2}))$.

AC ⁰	$\mathbb{Z}/n\mathbb{Z}$ with one monoid generator
TC ⁰	Z, linear solvable, free solvable PowerWP(Ab≀Z), PowerWP(nilpotent)
$NC^1 = AC^0(\mathrm{WP}(A_5))$	finite non-solvable, regular languages

AC ⁰	$\mathbb{Z}/n\mathbb{Z}$ with one monoid generator
TC ⁰	Z, linear solvable, free solvable PowerWP(Ab ≀ Z), PowerWP(nilpotent)
$NC^1 = AC^0(\mathrm{WP}(A_5))$	finite non-solvable, regular languages
$AC^0(WP(F_2))$	virtually free, Baumslag-Solitar groups, RAAGs, free products, graph products PowerWP(free)

AC ⁰	$\mathbb{Z}/n\mathbb{Z}$ with one monoid generator
TC ⁰	Z, linear solvable, free solvable PowerWP(Ab≀Z), PowerWP(nilpotent)
$NC^1 = AC^0(\mathrm{WP}(A_5))$	finite non-solvable, regular languages
$AC^0(WP(F_2))$	virtually free, Baumslag-Solitar groups, RAAGs, free products, graph products POWERWP(free)
LOGSPACE	linear groups, Grigorchuk group (not know to be complete)
NC ²	hyperbolic groups (not know to be complete)

AC ⁰	$\mathbb{Z}/n\mathbb{Z}$ with one monoid generator
TC ⁰	Z, linear solvable, free solvable PowerWP(Ab ≀ Z), PowerWP(nilpotent)
$NC^1 = AC^0(\mathrm{WP}(A_5))$	finite non-solvable, regular languages
$AC^0(WP(F_2))$	virtually free, Baumslag-Solitar groups, RAAGs, free products, graph products POWERWP(free)
LOGSPACE	linear groups, Grigorchuk group (not know to be complete)
NC ²	hyperbolic groups (not know to be complete)
P polynomial time	compressed word problem of free groups,

Open Questions I

- Is there a natural (non-group theoretic) problem which is AC⁰(WP(F₂))-complete?
- Is WP(F₂) complete for AC⁰(WP(F₂)) under many-one reductions?
- Is there a AC⁰(WP(F₂))-complete problem under many-one reductions?

Open Questions I

- Is there a natural (non-group theoretic) problem which is AC⁰(WP(F₂))-complete?
- Is WP(F₂) complete for AC⁰(WP(F₂)) under many-one reductions?
- Is there a AC⁰(WP(F₂))-complete problem under many-one reductions?
- How does the word problem of the Grigorchuk group relate to this class?
- Precise complexity for hyperbolic groups.

Open Questions I

- Is there a natural (non-group theoretic) problem which is AC⁰(WP(F₂))-complete?
- Is WP(F₂) complete for AC⁰(WP(F₂)) under many-one reductions?
- Is there a AC⁰(WP(F₂))-complete problem under many-one reductions?
- How does the word problem of the Grigorchuk group relate to this class?
- Precise complexity for hyperbolic groups.

Or even more challenging:

- ▶ Separation results: $TC^0 \neq NC^1$? $AC^0(WP(F_2)) \neq NC^1$?...
- Can a non-solvable group have word problem in TC⁰?

Power word problem in free groups

Power word problem: Given $p_1, \ldots, p_k \in \Sigma^*$ and $x_1, \ldots, x_k \in \mathbb{Z}$. Question: $p_1^{x_1} \cdots p_k^{x_k} = 1$ in G?

Theorem (Lohrey, W.)

The power word problem for free groups is in $AC^{0}(WP(F_{2}))$.

Theorem (Lohrey, W.)

 $\operatorname{PowerWP}(G * H) \in \mathsf{AC}^0(\operatorname{PowerWP}(G), \operatorname{PowerWP}(H), \operatorname{WP}(F_2)).$

Power word problem in free groups

Power word problem: Given $p_1, \ldots, p_k \in \Sigma^*$ and $x_1, \ldots, x_k \in \mathbb{Z}$. Question: $p_1^{x_1} \cdots p_k^{x_k} = 1$ in G?

Theorem (Lohrey, W.)

The power word problem for free groups is in $AC^{0}(WP(F_{2}))$.

Theorem (Lohrey, W.)

 $\operatorname{PowerWP}(G * H) \in \mathsf{AC}^0(\operatorname{PowerWP}(G), \operatorname{PowerWP}(H), \operatorname{WP}(F_2)).$

Three steps:

- Preprocessing
- Make exponents small
- Solve regular word problem

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1}

$$(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \overline{a} \overline{a} (a b)^{-1000}$$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1}

$$(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \overline{a} \overline{a} (a b)^{-1000}$$
$$= (a b)^{1000} a a b^{-100} b^{100} \overline{a} \overline{a} (a b)^{-1000}$$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1}

$$(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \overline{a} \overline{a} (a b)^{-1000}$$
$$= (a b)^{1000} a a \overline{a} \overline{a} (a b)^{-1000}$$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1}

$$(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \overline{a} \overline{a} (a b)^{-1000}$$
$$= (a b)^{1000} (a b)^{-1000}$$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1}

$$(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \overline{a} \overline{a} (a b)^{-1000}$$

= 1

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1}

Example 1

$$(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \overline{a} \overline{a} (a b)^{-1000}$$

= 1

$$b^{123}(b a a)^{123}a^{-246}b^{-123}(\overline{b} \overline{a})^{123}a^{123}$$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1}

Example 1

$$(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \overline{a} \overline{a} (a b)^{-1000}$$

= 1

$$b^{123}(b a a)^{123}a^{-246}b^{-123}(\overline{b} \overline{a})^{123}a^{123} \neq 1$$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1}

Example 1

$$(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \overline{a} \overline{a} (a b)^{-1000}$$

= 1

Example 2

$$b^{123}(b a a)^{123}a^{-246}b^{-123}(\overline{b} \overline{a})^{123}a^{123} \neq 1$$

$$(a a)^{500} (\overline{a})^{999} \overline{a}$$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1}

Example 1

$$(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \overline{a} \overline{a} (a b)^{-1000}$$

= 1

Example 2

$$b^{123}(b a a)^{123}a^{-246}b^{-123}(\overline{b} \overline{a})^{123}a^{123} \neq 1$$

$$(a a)^{500} (\overline{a})^{999} \overline{a} = 1$$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1}

Example 1

$$(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \overline{a} \overline{a} (a b)^{-1000}$$

= 1

Example 2

$$b^{123}(b a a)^{123}a^{-246}b^{-123}(\overline{b} \overline{a})^{123}a^{123} \neq 1$$

Example 3

$$(a a)^{500} (\overline{a})^{999} \overline{a} = 1$$

Example 4

$$(b a a \overline{a} b a)^{500} (b)^2 (\overline{b} \overline{b} \overline{a} b)^{999} (\overline{b} \overline{a} \overline{b} \overline{b} a b)^1 (a b)^{-1}$$

Armin Weiß

- $\Omega \subseteq \Sigma^+$ is set of non-empty words p with
- (1) p is cyclically reduced,
- (2) p is primitive,
- (3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{ uv \mid vu = p \text{ or } vu = p^{-1} \}$).

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,
- (3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

$$\Omega = \left\{ a, b, ab, a\overline{b}, aab, aa\overline{b}, \dots \right\}$$

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{\times} and w a factor of q^{\vee} . If vw = 1 in F and $|v| = |w| \ge |p| + |q| - 1$, then p = q.

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{\times} and w a factor of q^{\vee} . If vw = 1 in F and $|v| = |w| \ge |p| + |q| - 1$, then p = q.

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Lemma

Let
$$p, q \in \Omega$$
 and v a factor of p^{\times} and w a factor of q^{y} .
If $vw = 1$ in F and $|v| = |w| \ge |p| + |q| - 1$, then $p = q$.

• By (1),
$$v = w^{-1}$$
 as words.

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Lemma

Let
$$p, q \in \Omega$$
 and v a factor of p^{\times} and w a factor of q^{y} .
If $vw = 1$ in F and $|v| = |w| \ge |p| + |q| - 1$, then $p = q$

Proof.

• By (1),
$$v = w^{-1}$$
 as words.

 $\rightsquigarrow v$ has periods |p| and |q|.

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Lemma

Let
$$p, q \in \Omega$$
 and v a factor of p^{\times} and w a factor of q^{y} .
If $vw = 1$ in F and $|v| = |w| \ge |p| + |q| - 1$, then $p = q$

Proof.

By (1), v = w⁻¹ as words. → v has periods |p| and |q|.
By Fine and Wilf's theorem v has period gcd(|p|, |q|).

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Lemma

Let
$$p, q \in \Omega$$
 and v a factor of p^{\times} and w a factor of q^{y} .
If $vw = 1$ in F and $|v| = |w| \ge |p| + |q| - 1$, then $p = q$

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Lemma

Let
$$p, q \in \Omega$$
 and v a factor of p^x and w a factor of q^y .
If $vw = 1$ in F and $|v| = |w| \ge |p| + |q| - 1$, then $p = q$

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Lemma

Let
$$p, q \in \Omega$$
 and v a factor of p^x and w a factor of q^y .
If $vw = 1$ in F and $|v| = |w| \ge |p| + |q| - 1$, then $p = q$

The first aim is to rewrite an input word $q_1^{y_1} \cdots q_n^{y_n}$ in the form

$$w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$$
 with $p_i \in \Omega$ and s_i freely reduced. (1)

The first aim is to rewrite an input word $q_1^{y_1} \cdots q_n^{y_n}$ in the form

$$w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$$
 with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

The first aim is to rewrite an input word $q_1^{y_1} \cdots q_n^{y_n}$ in the form

$$w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$$
 with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

 $(b a a \overline{a} b a)^{500} (b)^2 (\overline{b} \overline{b} \overline{a} b)^{999} (\overline{b} \overline{a} \overline{b} \overline{b} a b)^1 (a b)^{-1}$

The first aim is to rewrite an input word $q_1^{y_1} \cdots q_n^{y_n}$ in the form

$$w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$$
 with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

 $(b a \overline{a} \overline{b} b)^{500} (b)^2 (\overline{b} \overline{b} \overline{a} b)^{999} (\overline{b} \overline{a} \overline{b} \overline{b} a b)^1 (a b)^{-1}$

Freely reduce the q_i .

The first aim is to rewrite an input word $q_1^{y_1} \cdots q_n^{y_n}$ in the form

$$w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$$
 with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

 $(b a b a)^{500} (b)^2 (\overline{b} \overline{b} \overline{a} b)^{999} (\overline{b} \overline{a} \overline{b} \overline{b} a b)^1 (a b)^{-1}$

Freely reduce the q_i .

The first aim is to rewrite an input word $q_1^{y_1} \cdots q_n^{y_n}$ in the form

$$w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$$
 with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

 $(b a b a)^{500} (b)^2 (\overline{b} \overline{b} \overline{a} b)^{999} (\overline{b} \overline{a} \overline{b} \overline{b} a b)^1 (a b)^{-1}$

- Freely reduce the q_i .
- Make each q_i cyclically reduced.

The first aim is to rewrite an input word $q_1^{y_1} \cdots q_n^{y_n}$ in the form

$$w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$$
 with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

 $(b a b a)^{500} (b)^2 \overline{b} (\overline{b} \overline{a})^{999} b \overline{b} \overline{a} (\overline{b} \overline{b})^1 a b (a b)^{-1}$

- Freely reduce the q_i.
- Make each q_i cyclically reduced.

The first aim is to rewrite an input word $q_1^{y_1} \cdots q_n^{y_n}$ in the form

$$w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$$
 with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

 $(b a b a)^{500} (b)^2 \overline{b} (\overline{b} \overline{a})^{999} b \overline{b} \overline{a} (\overline{b} \overline{b})^1 a b (a b)^{-1}$

- ▶ Freely reduce the *q_i*.
- Make each q_i cyclically reduced.
- Make each q_i primitive.

The first aim is to rewrite an input word $q_1^{y_1} \cdots q_n^{y_n}$ in the form

$$w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$$
 with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

$$(b a)^{1000} (b)^2 \overline{b} (\overline{b} \overline{a})^{999} b \overline{b} \overline{a} (\overline{b})^2 a b (a b)^{-1}$$

- Freely reduce the q_i.
- Make each q_i cyclically reduced.
- Make each q_i primitive.

The first aim is to rewrite an input word $q_1^{y_1} \cdots q_n^{y_n}$ in the form

$$w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$$
 with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

$$(b a)^{1000} (b)^2 \overline{b} (\overline{b} \overline{a})^{999} b \overline{b} \overline{a} (\overline{b})^2 a b (a b)^{-1}$$

- Freely reduce the q_i.
- Make each q_i cyclically reduced.
- Make each q_i primitive.

• Make
$$q_i$$
 lex. minimal in $\{ uv \mid vu = q_i \text{ or } vu = q_i^{-1} \}$

The first aim is to rewrite an input word $q_1^{y_1} \cdots q_n^{y_n}$ in the form

$$w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$$
 with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

$$b\,(a\,b)^{1000}\,\overline{b}\,(b)^2\,\overline{b}\,(a\,b)^{-999}\,b\,\overline{b}\,\overline{a}\,(b)^{-2}a\,b\,(a\,b\,)^{-1}$$

- Freely reduce the q_i.
- Make each q_i cyclically reduced.
- Make each q_i primitive.

Make q_i lex. minimal in $\{uv \mid vu = q_i \text{ or } vu = q_i^{-1}\}$ This yields $s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$

The first aim is to rewrite an input word $q_1^{y_1} \cdots q_n^{y_n}$ in the form

$$w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$$
 with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

- Freely reduce the q_i.
- Make each q_i cyclically reduced.
- Make each q_i primitive.

• Make q_i lex. minimal in $\{uv \mid vu = q_i \text{ or } vu = q_i^{-1}\}$

This yields

$$s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$$

Freely reduce the s_i.

The first aim is to rewrite an input word $q_1^{y_1} \cdots q_n^{y_n}$ in the form

$$w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$$
 with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

$$(a b)^{1000} \overline{b} (b)^2 \overline{b} (a b)^{-999} \overline{a} (b)^{-2} \overline{a} b (a b)^{-1}$$

- Freely reduce the q_i.
- Make each q_i cyclically reduced.
- Make each q_i primitive.

• Make q_i lex. minimal in $\{uv \mid vu = q_i \text{ or } vu = q_i^{-1}\}$

This yields $s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$

Freely reduce the s_i.

Proposition (W., 2016)

Freely reduced words can be computed in $AC^{0}(WP(F))$.

Proposition (W., 2016)

Freely reduced words can be computed in $AC^0(WP(F))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$.

Proposition (W., 2016)

Freely reduced words can be computed in $AC^0(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$.

Freely reduced words can be computed in $AC^{0}(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$. Define an equivalence relation $\approx \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ by

$$i \approx j \iff w_i = w_j \text{ and } \begin{cases} w_{i,j} =_F 1 & \text{if } i < j, \\ w_{j,i} =_F 1 & \text{if } j < i. \end{cases}$$

Freely reduced words can be computed in $AC^{0}(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$. Define an equivalence relation $\approx \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ by

$$i \approx j \iff w_i = w_j$$
 and $\begin{cases} w_{i,j} =_F 1 & \text{if } i < j, \\ w_{j,i} =_F 1 & \text{if } j < i. \end{cases}$

Freely reduced words can be computed in $AC^{0}(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$. Define an equivalence relation $\approx \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ by

$$i \approx j \iff w_i = w_j \text{ and } \begin{cases} w_{i,j} =_F 1 & \text{if } i < j, \\ w_{j,i} =_F 1 & \text{if } j < i. \end{cases}$$

 $\rightsquigarrow i \approx j$ iff w_i and w_j are the same edge in the Cayley graph

Freely reduced words can be computed in $AC^{0}(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$. Define an equivalence relation $\approx \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ by

$$i \approx j \iff w_i = w_j \text{ and } \begin{cases} w_{i,j} =_F 1 & \text{if } i < j, \\ w_{j,i} =_F 1 & \text{if } j < i. \end{cases}$$

 $\rightsquigarrow i \approx j$ iff w_i and w_j are the same edge in the Cayley graph

Freely reduced words can be computed in $AC^{0}(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$. Define an equivalence relation $\approx \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ by

$$i \approx j \iff w_i = w_j \text{ and } \begin{cases} w_{i,j} =_F 1 & \text{if } i < j, \\ w_{j,i} =_F 1 & \text{if } j < i. \end{cases}$$

 $\rightsquigarrow i \approx j$ iff w_i and w_j are the same edge in the Cayley graph

Freely reduced words can be computed in $AC^{0}(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$. Define an equivalence relation $\approx \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ by

$$i \approx j \iff w_i = w_j \text{ and } \begin{cases} w_{i,j} =_F 1 & \text{if } i < j, \\ w_{j,i} =_F 1 & \text{if } j < i. \end{cases}$$

 $\rightsquigarrow i \approx j$ iff w_i and w_j are the same edge in the Cayley graph

Freely reduced words can be computed in $AC^{0}(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$. Define an equivalence relation $\approx \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ by

$$i \approx j \iff w_i = w_j \text{ and } \begin{cases} w_{i,j} =_F 1 & \text{if } i < j, \\ w_{j,i} =_F 1 & \text{if } j < i. \end{cases}$$

 $\rightsquigarrow i \approx j$ iff w_i and w_j are the same edge in the Cayley graph

Freely reduced words can be computed in $AC^{0}(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$. Define an equivalence relation $\approx \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ by

$$i \approx j \iff w_i = w_j \text{ and } \begin{cases} w_{i,j} =_F 1 & \text{if } i < j, \\ w_{j,i} =_F 1 & \text{if } j < i. \end{cases}$$

Freely reduced words can be computed in $AC^{0}(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$. Define an equivalence relation $\approx \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ by

$$i \approx j \iff w_i = w_j \text{ and } \begin{cases} w_{i,j} =_F 1 & \text{if } i < j, \\ w_{j,i} =_F 1 & \text{if } j < i. \end{cases}$$

 $\rightsquigarrow i \approx j$ iff w_i and w_j are the same edge in the Cayley graph

Freely reduced words can be computed in $AC^{0}(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$. Define an equivalence relation $\approx \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ by

$$i \approx j \iff w_i = w_j \text{ and } \begin{cases} w_{i,j} =_F 1 & \text{if } i < j, \\ w_{j,i} =_F 1 & \text{if } j < i. \end{cases}$$

 $\rightsquigarrow i \approx j$ iff w_i and w_j are the same edge in the Cayley graph

Freely reduced words can be computed in $AC^{0}(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$. Define an equivalence relation $\approx \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ by

$$i \approx j \iff w_i = w_j \text{ and } \begin{cases} w_{i,j} =_F 1 & \text{if } i < j, \\ w_{j,i} =_F 1 & \text{if } j < i. \end{cases}$$

Freely reduced words can be computed in $AC^{0}(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$. Define an equivalence relation $\approx \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ by

$$i \approx j \iff w_i = w_j \text{ and } \begin{cases} w_{i,j} =_F 1 & \text{if } i < j, \\ w_{j,i} =_F 1 & \text{if } j < i. \end{cases}$$

Freely reduced words can be computed in $AC^{0}(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$. Define an equivalence relation $\approx \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ by

$$i \approx j \iff w_i = w_j \text{ and } \begin{cases} w_{i,j} =_F 1 & \text{if } i < j, \\ w_{j,i} =_F 1 & \text{if } j < i. \end{cases}$$

Freely reduced words can be computed in $AC^{0}(WP(F)))$.

Proof.

Input: $w = w_1 \cdots w_n$ with $w_i \in \Sigma \cup \Sigma^{-1}$. Set $w_{i,j} = w_{i+1} \cdots w_j$. Define an equivalence relation $\approx \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ by

$$i \approx j \iff w_i = w_j \text{ and } \begin{cases} w_{i,j} =_F 1 & \text{if } i < j, \\ w_{j,i} =_F 1 & \text{if } j < i. \end{cases}$$

 $\rightsquigarrow i \approx j$ iff w_i and w_j are the same edge in the Cayley graph

1 2 3 4 5 6 7 8 9 $b \overline{b} \overline{b} \overline{b} \overline{b} \overline{b} \overline{a} \overline{a} \overline{b} \overline{b}$ $w =_F b$

Can be checked in $AC^0(WP(F))$ for all pairs *i*, *j* whether *i* \approx *j*.

Proof. (Contd.)

Define a partial map

$$\begin{array}{l} \overline{\cdot} : \{1, \dots, n\}/\approx \to \{1, \dots, n\}/\approx \\ [i] \mapsto [j] & \text{if there is some } j \text{ with } w_i = \overline{w}_j \text{ and} \\ w_{i,j-1} =_F 1 \text{ (resp. } w_{j,i-1} =_F 1\text{).} \end{array}$$

We have

▶
$$[i] = \overline{[j]} \iff w_i$$
 and w_j are inverse edges in the Cayley graph.

Proof. (Contd.)

Define a partial map

$$\overline{\cdot} : \{1, \dots, n\}/\approx \to \{1, \dots, n\}/\approx$$

$$[i] \mapsto [j] \qquad \text{if there is some } j \text{ with } w_i = \overline{w}_j \text{ and }$$

$$w_{i,j-1} =_F 1 \text{ (resp. } w_{j,i-1} =_F 1\text{).}$$

We have

[i] = [j] ⇔ w_i and w_j are inverse edges in the Cayley graph.
 ||[i]| - |[i]|| ≤ 1 for all i

Proof. (Contd.)

Define a partial map

$$\overline{\cdot} : \{1, \dots, n\}/\approx \to \{1, \dots, n\}/\approx$$

$$[i] \mapsto [j] \qquad \text{if there is some } j \text{ with } w_i = \overline{w}_j \text{ and }$$

$$w_{i,j-1} =_F 1 \text{ (resp. } w_{j,i-1} =_F 1\text{).}$$

We have

- [i] = [j] ⇔ w_i and w_j are inverse edges in the Cayley graph.
 ||[i]| |[i]|| ≤ 1 for all i
- if $|[i]| = |\overline{[i]}|$, all letters in [i] cancel

Proof. (Contd.)

Define a partial map

$$\overline{\cdot} : \{1, \dots, n\}/\approx \to \{1, \dots, n\}/\approx$$

$$[i] \mapsto [j] \qquad \text{if there is some } j \text{ with } w_i = \overline{w}_j \text{ and }$$

$$w_{i,j-1} =_F 1 \text{ (resp. } w_{j,i-1} =_F 1\text{).}$$

We have

▶ $[i] = \overline{[j]} \iff w_i$ and w_j are inverse edges in the Cayley graph.

$$||[i]| - |\overline{[i]}|| \le 1 \text{ for all } i$$

• if $|[i]| = |\overline{[i]}|$, all letters in [i] cancel

if |[i]| > |[i]|, after any sequence of free reductions, there remains one letter w_j for some j ∈ [i].

Proof. (Contd.)

Define a partial map

$$\begin{array}{l} \overline{\cdot} : \{1, \dots, n\}/\approx \to \{1, \dots, n\}/\approx \\ [i] \mapsto [j] & \text{if there is some } j \text{ with } w_i = \overline{w}_j \text{ and} \\ w_{i,j-1} =_F 1 \text{ (resp. } w_{j,i-1} =_F 1\text{).} \end{array}$$

We have

▶ $[i] = \overline{[j]} \iff w_i$ and w_j are inverse edges in the Cayley graph.

$$||[i]| - |\overline{[i]}|| \le 1 \text{ for all } i$$

- if $|[i]| = |\overline{[i]}|$, all letters in [i] cancel
- if |[i]| > |[i]|, after any sequence of free reductions, there remains one letter w_j for some j ∈ [i].

Output all w_j with $j = \max[i]$ for some i with $|[i]| > |\overline{[i]}|$ and delete the other letters.

Now we have a "nice" instance

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced.

We know that

▶ if a long factor of $p_i^{x_i}$ cancels with a factor of $p_i^{x_j}$, then $p_i = p_j$

Now we have a "nice" instance

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced.

We know that

▶ if a long factor of $p_i^{x_i}$ cancels with a factor of $p_i^{x_j}$, then $p_i = p_j$

Idea:

• Decrease all exponents of p_i simultaneously.

Now we have a "nice" instance

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced.

We know that

▶ if a long factor of $p_i^{x_i}$ cancels with a factor of $p_i^{x_j}$, then $p_i = p_j$

Idea:

Decrease all exponents of p_i simultaneously.

But: cannot delete them entirely:

$$a^{100}ba^{-100}\overline{b} \neq 1$$
, but $a^0ba^0\overline{b} = 1$

Now we have a "nice" instance

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced.

We know that

▶ if a long factor of $p_i^{x_i}$ cancels with a factor of $p_i^{x_j}$, then $p_i = p_j$

Idea:

• Decrease all exponents of p_i simultaneously.

But: cannot delete them entirely:

$$a^{100}ba^{-100}\overline{b} \neq 1$$
, but $a^0ba^0\overline{b} = 1$

Nor down to 1:

$$a^{100}(\overline{a} b a)^1 a^{-100}\overline{b} \neq 1$$
 but $a^1(\overline{a} b a)^1 a^{-1}\overline{b} = 1$

Define
$$\mathcal{S}(w) = u_0 p^{z_1} u_1 \cdots p^{z_m} u_m$$
 where $z_i = y_i - \operatorname{sign}(y_i) \cdot \sum_{j \in C_i} d_j$

Proposition

$$w =_F 1 \iff \mathcal{S}(w) =_F 1.$$

Proposition

$$w =_F 1 \iff \mathcal{S}(w) =_F 1.$$

Proof of the main theorem.

- Preprocessing gives a "nice word" $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$.
- For all p ∈ Ω which appear in w, compute S(w) in parallel (iterated addition ~→ in TC⁰).
- Yields a word of polynomial length ~>> apply the ordinary word problem.

Theorem (Lohrey, W.)

Let G be f.g. and $H \leq G$ of finite index. Then POWERWP(G) is NC^1 -many-one-reducible to POWERWP(H).

Theorem (Lohrey, W.)

Let G be f.g. and $H \leq G$ of finite index. Then POWERWP(G) is NC^1 -many-one-reducible to POWERWP(H).

Corollary

The power word problem of f.g. virtually free groups is in $AC^{0}(WP(F_{2}))$.

Theorem (Lohrey, W.)

Let G be f.g. and $H \leq G$ of finite index. Then POWERWP(G) is NC^1 -many-one-reducible to POWERWP(H).

Corollary

The power word problem of f.g. virtually free groups is in $AC^{0}(WP(F_{2}))$.

Theorem (Lohrey, W.)

Let G be either

- finite non-solvable
- f.g. free of rank ≥ 2 .

Then $\operatorname{POWERWP}(G \wr \mathbb{Z})$ is coNP-complete.

$CNF-UNSAT \leq POWERWP(F_2 \wr \mathbb{Z}):$

CNF-UNSAT \leq POWERWP($F_2 \wr \mathbb{Z}$):

Let $F_2 \wr \mathbb{Z} = \langle a, b, t \rangle$; follow Robinson's proof that WP(F_2) is NC¹-hard:

CNF-UNSAT \leq POWERWP($F_2 \wr \mathbb{Z}$):

Let $F_2 \wr \mathbb{Z} = \langle a, b, t \rangle$; follow Robinson's proof that WP(F_2) is NC¹-hard:

every CNF formula is an NC¹ circuit (logarithmic depth)

$CNF-UNSAT \leq POWERWP(F_2 \wr \mathbb{Z}):$

Let $F_2 \wr \mathbb{Z} = \langle a, b, t \rangle$; follow Robinson's proof that WP(F_2) is NC¹-hard:

every CNF formula is an NC¹ circuit (logarithmic depth)

Given a formula F over variables $\{X_1, \ldots, X_m\}$, construct a word $w_F \in \left(\{a^{\pm 1}, b^{\pm 1}\} \cup \{Y_1^{\pm 1}, \ldots, Y_m^{\pm 1}, \widetilde{Y}_1^{\pm 1}, \ldots, \widetilde{Y}_m^{\pm 1}\}\right)^*$ such that for any valuation $\sigma : \{X_1, \ldots, X_m\} \to \{0, 1\}$

$$\sigma(F) = 0 \iff \sigma'(w_F) =_{F_2} 1$$

$CNF-UNSAT \leq POWERWP(F_2 \wr \mathbb{Z}):$

Let $F_2 \wr \mathbb{Z} = \langle a, b, t \rangle$; follow Robinson's proof that WP(F_2) is NC¹-hard:

every CNF formula is an NC¹ circuit (logarithmic depth)

Given a formula F over variables $\{X_1, \ldots, X_m\}$, construct a word $w_F \in \left(\{a^{\pm 1}, b^{\pm 1}\} \cup \{Y_1^{\pm 1}, \ldots, Y_m^{\pm 1}, \widetilde{Y}_1^{\pm 1}, \ldots, \widetilde{Y}_m^{\pm 1}\}\right)^*$ such that for any valuation $\sigma : \{X_1, \ldots, X_m\} \to \{0, 1\}$

$$\sigma(F) = 0 \iff \sigma'(w_F) =_{F_2} 1$$

where $\sigma'(Y_i) = \begin{cases} 1 & \text{if } \sigma(X_i) = 0\\ a & \text{if } \sigma(X_i) = 1 \end{cases}$ and $\sigma'(\widetilde{Y}_i) = \begin{cases} a & \text{if } \sigma(X_i) = 0, \\ 1 & \text{if } \sigma(X_i) = 1. \end{cases}$

$CNF-UNSAT \leq POWERWP(F_2 \wr \mathbb{Z}):$

Let $F_2 \wr \mathbb{Z} = \langle a, b, t \rangle$; follow Robinson's proof that WP(F_2) is NC¹-hard:

every CNF formula is an NC¹ circuit (logarithmic depth)

Given a formula F over variables $\{X_1, \ldots, X_m\}$, construct a word $w_F \in \left(\{a^{\pm 1}, b^{\pm 1}\} \cup \{Y_1^{\pm 1}, \ldots, Y_m^{\pm 1}, \widetilde{Y}_1^{\pm 1}, \ldots, \widetilde{Y}_m^{\pm 1}\}\right)^*$ such that for any valuation $\sigma : \{X_1, \ldots, X_m\} \to \{0, 1\}$

$$\sigma(F) = 0 \iff \sigma'(w_F) =_{F_2} 1$$

where $\sigma'(Y_i) = \begin{cases} 1 & \text{if } \sigma(X_i) = 0\\ a & \text{if } \sigma(X_i) = 1 \end{cases}$ and $\sigma'(\widetilde{Y}_i) = \begin{cases} a & \text{if } \sigma(X_i) = 0, \\ 1 & \text{if } \sigma(X_i) = 1. \end{cases}$

 $\blacktriangleright F \lor G \rightsquigarrow w_F w_G + padding$

$CNF-UNSAT \leq POWERWP(F_2 \wr \mathbb{Z}):$

Let $F_2 \wr \mathbb{Z} = \langle a, b, t \rangle$; follow Robinson's proof that WP(F_2) is NC¹-hard:

every CNF formula is an NC¹ circuit (logarithmic depth)

Given a formula F over variables $\{X_1, \ldots, X_m\}$, construct a word $w_F \in \left(\{a^{\pm 1}, b^{\pm 1}\} \cup \{Y_1^{\pm 1}, \ldots, Y_m^{\pm 1}, \widetilde{Y}_1^{\pm 1}, \ldots, \widetilde{Y}_m^{\pm 1}\}\right)^*$ such that for any valuation $\sigma : \{X_1, \ldots, X_m\} \to \{0, 1\}$

$$\sigma(F) = 0 \iff \sigma'(w_F) =_{F_2} 1$$

where $\sigma'(Y_i) = \begin{cases} 1 & \text{if } \sigma(X_i) = 0\\ a & \text{if } \sigma(X_i) = 1 \end{cases}$ and $\sigma'(\widetilde{Y}_i) = \begin{cases} a & \text{if } \sigma(X_i) = 0, \\ 1 & \text{if } \sigma(X_i) = 1. \end{cases}$

 $\blacktriangleright F \lor G \rightsquigarrow w_F w_G + \text{padding} \qquad \rightsquigarrow a \ b \ w_F \ b \ w_G \ \overline{b} \ \overline{b} \ \overline{a}$

$CNF-UNSAT \leq POWERWP(F_2 \wr \mathbb{Z}):$

Let $F_2 \wr \mathbb{Z} = \langle a, b, t \rangle$; follow Robinson's proof that WP(F_2) is NC¹-hard:

every CNF formula is an NC¹ circuit (logarithmic depth)

Given a formula F over variables $\{X_1, \ldots, X_m\}$, construct a word $w_F \in \left(\{a^{\pm 1}, b^{\pm 1}\} \cup \{Y_1^{\pm 1}, \ldots, Y_m^{\pm 1}, \widetilde{Y}_1^{\pm 1}, \ldots, \widetilde{Y}_m^{\pm 1}\}\right)^*$ such that for any valuation $\sigma : \{X_1, \ldots, X_m\} \to \{0, 1\}$

$$\sigma(F) = 0 \iff \sigma'(w_F) =_{F_2} 1$$

where $\sigma'(Y_i) = \begin{cases} 1 & \text{if } \sigma(X_i) = 0\\ a & \text{if } \sigma(X_i) = 1 \end{cases}$ and $\sigma'(\widetilde{Y}_i) = \begin{cases} a & \text{if } \sigma(X_i) = 0, \\ 1 & \text{if } \sigma(X_i) = 1. \end{cases}$

F ∨ *G* → *w_Fw_G* + padding → *a b w_F b w_G b b ā F* ∧ *G* → [*w_F*, *w_G*] + padding → *a*[*b w_F b*, *b b w_G b b*]ā

$CNF-UNSAT \leq POWERWP(F_2 \wr \mathbb{Z}):$

Let $F_2 \wr \mathbb{Z} = \langle a, b, t \rangle$; follow Robinson's proof that WP(F_2) is NC¹-hard:

every CNF formula is an NC¹ circuit (logarithmic depth)

Given a formula F over variables $\{X_1, \ldots, X_m\}$, construct a word $w_F \in \left(\{a^{\pm 1}, b^{\pm 1}\} \cup \{Y_1^{\pm 1}, \ldots, Y_m^{\pm 1}, \widetilde{Y}_1^{\pm 1}, \ldots, \widetilde{Y}_m^{\pm 1}\}\right)^*$ such that for any valuation $\sigma : \{X_1, \ldots, X_m\} \to \{0, 1\}$

$$\sigma(F) = 0 \iff \sigma'(w_F) =_{F_2} 1$$

where $\sigma'(Y_i) = \begin{cases} 1 & \text{if } \sigma(X_i) = 0\\ a & \text{if } \sigma(X_i) = 1 \end{cases}$ and $\sigma'(\widetilde{Y}_i) = \begin{cases} a & \text{if } \sigma(X_i) = 0, \\ 1 & \text{if } \sigma(X_i) = 1. \end{cases}$

F ∨ *G* ~→ *w_Fw_G* + padding ~→ *a b w_F b w_G b b ā F* ∧ *G* ~→ [*w_F*, *w_G*] + padding ~→ *a*[*b w_F b*, *b b w_G b b*]ā
logarithmic depth ~→ polynomial size

Armin Weiß

$$\blacktriangleright F_2 \wr \mathbb{Z} = \langle a, b, t \rangle.$$

• For any assignment $\sigma : \{X_1, \ldots, X_m\} \rightarrow \{0, 1\}$

$$\sigma(F) = 0 \iff \sigma'(w_F) =_{F_2} 1$$

 $\blacktriangleright F_2 \wr \mathbb{Z} = \langle a, b, t \rangle.$

▶ For any assignment $\sigma: \{X_1, \ldots, X_m\} \rightarrow \{0, 1\}$

$$\sigma(F) = 0 \iff \sigma'(w_F) =_{F_2} 1$$

Evaluate w_F for all valuations "in parallel":

▶ Let $p_1, \ldots, p_m \in \mathbb{N}$ be pairwise coprime, $M = \prod p_i, M_i = M/p_i$

 $\blacktriangleright F_2 \wr \mathbb{Z} = \langle a, b, t \rangle.$

• For any assignment $\sigma : \{X_1, \ldots, X_m\} \rightarrow \{0, 1\}$

$$\sigma(F) = 0 \iff \sigma'(w_F) =_{F_2} 1$$

Evaluate w_F for all valuations "in parallel":

Let p₁,..., p_m ∈ N be pairwise coprime, M = ∏ p_i, M_i = M/p_i
Y_i ↦ (a t ··· t)^{M_i} t^{-M} = (a, 1, ..., 1, ..., a, 1, ..., 1)
M_i times

 $\blacktriangleright F_2 \wr \mathbb{Z} = \langle a, b, t \rangle.$

▶ For any assignment $\sigma: \{X_1, \ldots, X_m\} \rightarrow \{0, 1\}$

$$\sigma(F) = 0 \iff \sigma'(w_F) =_{F_2} 1$$

 $\blacktriangleright F_2 \wr \mathbb{Z} = \langle a, b, t \rangle.$

▶ For any assignment $\sigma: \{X_1, \ldots, X_m\} \rightarrow \{0, 1\}$

$$\sigma(F) = 0 \iff \sigma'(w_F) =_{F_2} 1$$

► Let
$$p_1, \ldots, p_m \in \mathbb{N}$$
 be pairwise coprime, $M = \prod p_i, M_i = M/p_i$
► $Y_i \mapsto (a \underbrace{t \cdots t}_{p_i})^{M_i} t^{-M} = (a, \underbrace{1, \ldots, 1}_{p_i-1}, \ldots, a, \underbrace{1, \ldots, 1}_{p_i-1})$
 $\longrightarrow a \text{ at positions} \equiv 0 \mod p_i$
 $\tilde{Y}_i \mapsto (t \underbrace{at \cdots at}_{p_i-1})^{M_i} t^{-M} = (1, \underbrace{a, \ldots, a}_{p_i-1}, \ldots, 1, \underbrace{a, \ldots, a}_{p_i-1})$

$$\blacktriangleright F_2 \wr \mathbb{Z} = \langle a, b, t \rangle.$$

• For any assignment $\sigma : \{X_1, \ldots, X_m\} \rightarrow \{0, 1\}$

$$\sigma(F) = 0 \iff \sigma'(w_F) =_{F_2} 1$$

Let
$$p_1, \ldots, p_m \in \mathbb{N}$$
 be pairwise coprime, $M = \prod p_i, M_i = M/p_i$
Y_i → $(a \underbrace{t \cdots t}_{p_i})^{M_i} t^{-M} = (a, \underbrace{1, \ldots, 1}_{p_i-1}, \ldots, a, \underbrace{1, \ldots, 1}_{p_i-1})$
 \sim a at positions $\equiv 0 \mod p_i$
 $\tilde{Y}_i \mapsto (t \underbrace{at \cdots at}_{p_i-1})^{M_i} t^{-M} = (1, \underbrace{a, \ldots, a}_{p_i-1}, \ldots, 1, \underbrace{a, \ldots, a}_{p_i-1})$
 \sim a at positions $\neq 0 \mod p_i$

 $\blacktriangleright F_2 \wr \mathbb{Z} = \langle a, b, t \rangle.$

• For any assignment $\sigma : \{X_1, \ldots, X_m\} \rightarrow \{0, 1\}$

$$\sigma(F) = 0 \iff \sigma'(w_F) =_{F_2} 1$$

Evaluate w_F for all valuations "in parallel":

Let p₁,..., p_m ∈ N be pairwise coprime, M = ∏ p_i, M_i = M/p_i
Y_i ↦ (a t ··· t)^{M_i}t^{-M} = (a, 1, ..., 1, ..., a, 1, ..., 1) _{p_i-1} _{M_i} times
→ a at positions ≡ 0 mod p_i $\tilde{Y}_i \mapsto (t a t ··· a t)^{M_i} t^{-M} = (1, a, ..., a, ..., 1, a, ..., a)$ $\rightarrow a$ at positions ≠ 0 mod p_i
By the Chinese Remainder Theorem, this tests all valuations.

The proof for free groups should be generalizable to

- RAAGs (= graph groups),
- graph products,
- hyperbolic groups,
- ► HNN extensions and amalgamated products over finite subgroups.

The proof for free groups should be generalizable to

- RAAGs (= graph groups),
- graph products,
- hyperbolic groups,
- HNN extensions and amalgamated products over finite subgroups.

Problem:

Lemma

Let $p, q \in \Omega$ and v a factor of p^x and w a factor of q^y .

If vw = 1 in F and $|v| = |w| \ge |p| + |q| - 1$, then p = q.

The proof for free groups should be generalizable to

- RAAGs (= graph groups),
- graph products,
- hyperbolic groups,
- HNN extensions and amalgamated products over finite subgroups.

Problem:

Lemma

Let $p, q \in \Omega$ and v a factor of p^{\times} and w a factor of q^{y} .

If
$$vw = 1$$
 in F and $|v| = |w| \ge |p| + |q| - 1$, then $p = q$.

is NOT true anymore!!

The proof for free groups should be generalizable to

- RAAGs (= graph groups),
- graph products,
- hyperbolic groups,
- HNN extensions and amalgamated products over finite subgroups.

Problem:

Lemma

Let $p, q \in \Omega$ and v a factor of p^{\times} and w a factor of q^{y} .

If
$$vw = 1$$
 in F and $|v| = |w| \ge |p| + |q| - 1$, then $p = q$.

is NOT true anymore!!

Example

Let p = qa with [q, a] = 1, then q^x is a factor of p^x and cancels with q^{-x} but $p \neq q!$

 \rightsquigarrow need more restrictions on Ω

Armin Weiß

Conclusion

$$\left(b^{13}\overline{a}\left((b\,a^{8}a)^{13}a^{-26}b^{-13}\right)^{12}\right)^{16}\left((\overline{b}\,\overline{a}\,)^{13}a^{13}\right)^{20}$$

- Conjecture: for constant nesting depth in AC⁰(WP(F₂)) (same approach).
- Not clear what happens for unbounded nesting depth: ... is it P-complete? ... or in AC⁰(WP(F₂))?

$$\left(b^{13}\overline{a}\left((b\,a^{8}a)^{13}a^{-26}b^{-13}\right)^{12}\right)^{16}\left((\overline{b}\,\overline{a}\,)^{13}a^{13}\right)^{20}$$

- Conjecture: for constant nesting depth in AC⁰(WP(F₂)) (same approach).
- Not clear what happens for unbounded nesting depth: ... is it P-complete? ... or in AC⁰(WP(F₂))?
- Complexity of POWERWP(G ≥ Z) for G non-abelian, but not free nor finite, non-solvable (e.g. G nilpotent)?

$$\left(b^{13}\overline{a}\left((b\,a^{8}a)^{13}a^{-26}b^{-13}\right)^{12}\right)^{16}\left((\overline{b}\,\overline{a}\,)^{13}a^{13}\right)^{20}$$

- Conjecture: for constant nesting depth in AC⁰(WP(F₂)) (same approach).
- Not clear what happens for unbounded nesting depth: ... is it P-complete? ... or in AC⁰(WP(F₂))?
- Complexity of POWERWP(G ≀ Z) for G non-abelian, but not free nor finite, non-solvable (e.g. G nilpotent)?
- Complexity of **POWERWP** in other groups:
 - Grigochuk group what is the maximal order of an element of length n?
 - other automaton groups?
 - Baumslag-Solitar groups?

$$\left(b^{13}\overline{a}\left((b\,a^{8}a)^{13}a^{-26}b^{-13}\right)^{12}\right)^{16}\left((\overline{b}\,\overline{a}\,)^{13}a^{13}\right)^{20}$$

- Conjecture: for constant nesting depth in AC⁰(WP(F₂)) (same approach).
- Not clear what happens for unbounded nesting depth: ... is it P-complete? ... or in AC⁰(WP(F₂))?
- Complexity of POWERWP(G ≀ Z) for G non-abelian, but not free nor finite, non-solvable (e.g. G nilpotent)?
- Complexity of **POWERWP** in other groups:
 - Grigochuk group what is the maximal order of an element of length n?
 - other automaton groups?
 - Baumslag-Solitar groups?