The power word problem in free groups

Armin Weiß ${ }^{1}$

Universität Stuttgart, FMI
Schloss Dagstuhl, March, 2019
${ }^{1}$ Joint work with Markus Lohrey

Dehn's fundamental problems and others

Let G be a f.g. group, generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem (WP): Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?
- Conjugacy problem: Given $v, w \in \Sigma^{*}$.

Question: $\exists z \in G$ such that $z v z^{-1}=w$?

Dehn's fundamental problems and others

Let G be a f.g. group, generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem (WP): Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?
- Conjugacy problem: Given $v, w \in \Sigma^{*}$.

Question: $\exists z \in G$ such that $z v z^{-1}=w$?

- Compressed word problem: Given a straight-line program \mathbb{G} which produces a word $w \in \Sigma^{*}$.

Question: Is $w=1$ in G ?

Dehn's fundamental problems and others

Let G be a f.g. group, generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem (WP): Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?
- Conjugacy problem: Given $v, w \in \Sigma^{*}$.

Question: $\exists z \in G$ such that $z v z^{-1}=w$?

- Compressed word problem: Given a straight-line program \mathbb{G} which produces a word $w \in \Sigma^{*}$.

Question: Is $w=1$ in G ?

- Knapsack problem: Given $p_{1}, \ldots, p_{k}, w \in \Sigma^{*}$.

Question: $\exists x_{1}, \ldots, x_{k} \in \mathbb{N}$ such that $p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}=w$?

Dehn's fundamental problems and others

Let G be a f.g. group, generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem (WP): Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?
- Conjugacy problem: Given $v, w \in \Sigma^{*}$.

Question: $\exists z \in G$ such that $z v z^{-1}=w$?

- Compressed word problem: Given a straight-line program \mathbb{G} which produces a word $w \in \Sigma^{*}$.

Question: Is $w=1$ in G ?

- Knapsack problem: Given $p_{1}, \ldots, p_{k}, w \in \Sigma^{*}$.

Question: $\exists x_{1}, \ldots, x_{k} \in \mathbb{N}$ such that $p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}=w$?

- Power word problem (PowerWP):

Given $p_{1}, \ldots, p_{k} \in \Sigma^{*}$ and $x_{1}, \ldots, x_{k} \in \mathbb{Z}$.
Question: $p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}=1$ in G ?

Why is the power word problem interesting?

The power word problem is natural:

- straightforward way of compression

Why is the power word problem interesting?

The power word problem is natural:

- straightforward way of compression
- for abelian groups this is the usual way of encoding

Why is the power word problem interesting?

The power word problem is natural:

- straightforward way of compression
- for abelian groups this is the usual way of encoding
- in nilpotent groups, every element can be expressed by a power word of logarithmic length

Why is the power word problem interesting?

The power word problem is natural:

- straightforward way of compression
- for abelian groups this is the usual way of encoding
- in nilpotent groups, every element can be expressed by a power word of logarithmic length
- binary encoded matrices in $\operatorname{SL}(2, \mathbb{Z})$ yield power words over the generators (Gurevich, Schupp 07)

Why is the power word problem interesting?

The power word problem is natural:

- straightforward way of compression
- for abelian groups this is the usual way of encoding
- in nilpotent groups, every element can be expressed by a power word of logarithmic length
- binary encoded matrices in $\operatorname{SL}(2, \mathbb{Z})$ yield power words over the generators (Gurevich, Schupp 07)

$$
\left(\begin{array}{cc}
-499 & 5000 \\
-50 & 501
\end{array}\right)
$$

Why is the power word problem interesting?

The power word problem is natural:

- straightforward way of compression
- for abelian groups this is the usual way of encoding
- in nilpotent groups, every element can be expressed by a power word of logarithmic length
- binary encoded matrices in $\operatorname{SL}(2, \mathbb{Z})$ yield power words over the generators (Gurevich, Schupp 07)

$$
\left(\begin{array}{cc}
-499 & 5000 \\
-50 & 501
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{10}\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{50}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{-10}
$$

Why is the power word problem interesting?

The power word problem is natural:

- straightforward way of compression
- for abelian groups this is the usual way of encoding
- in nilpotent groups, every element can be expressed by a power word of logarithmic length
- binary encoded matrices in $\operatorname{SL}(2, \mathbb{Z})$ yield power words over the generators (Gurevich, Schupp 07)

$$
\left(\begin{array}{cc}
-499 & 5000 \\
-50 & 501
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{10}\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{50}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{-10}
$$

The power word problem helps

- to solve the knapsack problem in RAAGS (Lohrey, Zetsche, 15), ...
- to understand the compressed word problem better:
- lower bounds
- better upper bounds in the special case.

Complexity

Why parallel complexity?

- Finer classification of problems inside polynomial time.

Complexity

Why parallel complexity?

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.

Complexity

Why parallel complexity?

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.
- Parallel computing is more and more important in the "real world".

Parallel Complexity

Machine models:

- PRAMs (parallel random access machines)
- (Boolean) circuits

Parallel Complexity

Machine models:

- PRAMs (parallel random access machines)
- (Boolean) circuits

Circuit $=$ directed acyclic graph where each vertex is either:

- input gates (has only outgoing edges)
- Boolean gates (and \wedge, or \vee, not \neg having incoming and outgoing edges)
- output gates (only incoming edges)

Parallel Complexity

Machine models:

- PRAMs (parallel random access machines)
- (Boolean) circuits

Circuit $=$ directed acyclic graph where each vertex is either:

- input gates (has only outgoing edges)
- Boolean gates (and \wedge, or \vee, not \neg having incoming and outgoing edges)
- output gates (only incoming edges)

Parallel Complexity

Machine models:

- PRAMs (parallel random access machines)
- (Boolean) circuits

Circuit $=$ directed acyclic graph where each vertex is either:

- input gates (has only outgoing edges)
- Boolean gates (and \wedge, or \vee, not \neg having incoming and outgoing edges)
- output gates (only incoming edges)
size $=$ number of gates depth $=$ longest path from input to output gate fan-in $=$ number of input-wires per gate

NC = problems which can be solved by a family of circuits of polynomial size and polylogarithmic depth and bounded fan-in.

Parallel Complexity

Inside NC:

- $\mathrm{NC}^{i}=$ solved by a family of circuits of depth $\mathcal{O}\left(\log ^{i} n\right)$ and polynomial size with bounded fan-in (= in-degree) \neg, \wedge, \vee gates.

Parallel Complexity

Inside NC:

- $\mathrm{NC}^{i}=$ solved by a family of circuits of depth $\mathcal{O}\left(\log ^{i} n\right)$ and polynomial size with bounded fan-in (= in-degree) \neg, \wedge, \vee gates.

Infinite hierarchy:

$$
\mathrm{NC}^{1}
$$

$$
\subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P}
$$

Parallel Complexity

Inside NC:

- $\mathrm{NC}^{i}=$ solved by a family of circuits of depth $\mathcal{O}\left(\log ^{i} n\right)$ and polynomial size with bounded fan-in (= in-degree) \neg, \wedge, \vee gates.

Infinite hierarchy:

$$
\mathrm{NC}^{1} \subseteq \mathrm{LOGSPACE} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P}
$$

Parallel Complexity

Inside NC:

- $\mathrm{NC}^{i}=$ solved by a family of circuits of depth $\mathcal{O}\left(\log ^{i} n\right)$ and polynomial size with bounded fan-in (= in-degree) \neg, \wedge, \vee gates.

Infinite hierarchy:

$$
\mathrm{NC}^{1} \subseteq \mathrm{LOGSPACE} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P}
$$

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)
The word problem of linear groups is in LOGSPACE.

Parallel Complexity

Inside NC:

- $\mathrm{NC}^{i}=$ solved by a family of circuits of depth $\mathcal{O}\left(\log ^{i} n\right)$ and polynomial size with bounded fan-in (= in-degree) \neg, \wedge, \vee gates.

Infinite hierarchy:

$$
\mathrm{AC}^{0} \subsetneq \quad \mathrm{NC}^{1} \subseteq \mathrm{LOGSPACE} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P}
$$

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)
The word problem of linear groups is in LOGSPACE.
Inside NC^{1} :

- $A C^{0}=$ solved by a family of circuits of constant depth and polynomial size with unbounded fan-in \neg, \wedge, \vee gates.

Parallel Complexity

Inside NC:

- $\mathrm{NC}^{i}=$ solved by a family of circuits of depth $\mathcal{O}\left(\log ^{i} n\right)$ and polynomial size with bounded fan-in (= in-degree) \neg, \wedge, \vee gates.

Infinite hierarchy:

$$
\mathrm{AC}^{0} \subsetneq \mathrm{TC}^{0} \subseteq \mathrm{NC}^{1} \subseteq \mathrm{LOGSPACE} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P} .
$$

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)

The word problem of linear groups is in LOGSPACE.
Inside NC^{1} :

- $\mathrm{AC}^{0}=$ solved by a family of circuits of constant depth and polynomial size with unbounded fan-in \neg, \wedge, \vee gates.
- TC^{0} allows additionally majority gates: $\operatorname{Maj}(w)=1$ iff $|w|_{1} \geq|w|_{0}$ for $w \in\{0,1\}^{*}$.

Word problem of \mathbb{Z}

The word problem of \mathbb{Z} with generators $\{+1,-1\}$ is in TC^{0}.

Word problem of \mathbb{Z}

The word problem of \mathbb{Z} with generators $\{+1,-1\}$ is in TC^{0}.
Use 0 to encode -1 and 1 for 1 .

Word problem of \mathbb{Z}

The word problem of \mathbb{Z} with generators $\{+1,-1\}$ is in TC^{0}.
Use 0 to encode -1 and 1 for 1 . Let $w \in\{0,1\}^{*}$,
w represents 0 in $\mathbb{Z} \Longleftrightarrow|w|_{1}=|w|_{0}$
$\Longleftrightarrow \operatorname{Maj}(w) \wedge \operatorname{Maj}(\neg w)$

The word problem of \mathbb{Z} with generators $\{+1,-1\}$ is in TC^{0}.
Use 0 to encode -1 and 1 for 1 . Let $w \in\{0,1\}^{*}$,
w represents 0 in $\mathbb{Z} \Longleftrightarrow|w|_{1}=|w|_{0}$

$$
\Longleftrightarrow \operatorname{Maj}(w) \wedge \operatorname{Maj}(\neg w)
$$

The word problem of \mathbb{Z} with generators $\{+1,-1\}$ is in TC^{0}.
Use 0 to encode -1 and 1 for 1 . Let $w \in\{0,1\}^{*}$,
w represents 0 in $\mathbb{Z} \Longleftrightarrow|w|_{1}=|w|_{0}$ $\Longleftrightarrow \operatorname{Maj}(w) \wedge \operatorname{Maj}(\neg w)$

Theorem (Myasnikov, W. 2017, Lohrey, W.)
If G is f.g. nilpotent or $G=H$ i \mathbb{Z} for H f.g. abelian, then $\operatorname{PowERWP}(G)$ is in TC^{0}.

Reductions

- For a formal language $L \subseteq\{0,1\}^{*}, \mathrm{AC}^{0}(L)$ allows additionally oracle gates for L.
- $L^{\prime} \in A C^{0}(L)$ means L^{\prime} is $A C^{0}$-(Turing)-reducible to L.

Reductions

- For a formal language $L \subseteq\{0,1\}^{*}, \mathrm{AC}^{0}(L)$ allows additionally oracle gates for L.
- $L^{\prime} \in \mathrm{AC}^{0}(L)$ means L^{\prime} is $A C^{0}$-(Turing)-reducible to L.
- Every problem in TC^{0} is AC^{0}-reducible to Majority. \rightsquigarrow Majority is TC^{0}-complete.

Reductions

- For a formal language $L \subseteq\{0,1\}^{*}, \mathrm{AC}^{0}(L)$ allows additionally oracle gates for L.
- $L^{\prime} \in \mathrm{AC}^{0}(L)$ means L^{\prime} is AC^{0}-(Turing)-reducible to L.
- Every problem in TC^{0} is AC^{0}-reducible to Majority. \rightsquigarrow Majority is TC^{0}-complete.
- $\mathrm{TC}^{0}=\mathrm{AC}^{0}(\mathrm{WP}(\mathbb{Z})) \subseteq \mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$
- $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right) \subseteq$ LOGSPACE
- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).
- $\mathrm{WP}\left(F_{k}\right)$ is NC^{1}-hard for $k \geq 2$ (Robinson, 1993).
- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).
- $\mathrm{WP}\left(F_{k}\right)$ is NC^{1}-hard for $k \geq 2$ (Robinson, 1993).
- The compressed word problem is P -complete for $k \geq 2$ (Lohrey).
- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).
- $\mathrm{WP}\left(F_{k}\right)$ is NC^{1}-hard for $k \geq 2$ (Robinson, 1993).
- The compressed word problem is P -complete for $k \geq 2$ (Lohrey).

Theorem (Lohrey, W.)

The power word problem for free groups is in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$.

Overview: small circuit classes

AC^{0}	$\mathbb{Z} / n \mathbb{Z}$ with one monoid generator
TC^{0}	\mathbb{Z}, linear solvable, free solvable
	PowerWP $(\mathrm{Ab} 2 \mathbb{Z})$, PoWERWP(nilpotent)
$\mathrm{NC}^{1}=\mathrm{AC}^{0}\left(\mathrm{WP}\left(A_{5}\right)\right)$	finite non-solvable, regular languages

Overview: small circuit classes

	$\mathbb{Z} / n \mathbb{Z}$ with one monoid generator
TC^{0}	\mathbb{Z}, linear solvable, free solvable POWERWP $(\mathrm{Ab} \imath \mathbb{Z})$, PowerWP(nilpotent)
$\mathrm{NC}^{1}=\mathrm{AC}^{0}\left(\mathrm{WP}\left(A_{5}\right)\right)$	finite non-solvable, regular languages
$\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$	virtually free, Baumslag-Solitar groups, RAAGs, free products, graph products PowerWP

Overview: small circuit classes

	$\mathbb{Z} / n \mathbb{Z}$ with one monoid generator
TC^{0}	\mathbb{Z}, linear solvable, free solvable PowerWP(Ab $i \mathbb{Z})$, PowerWP(nilpotent)
$\mathrm{NC}^{1}=\mathrm{AC}^{0}\left(\mathrm{WP}\left(A_{5}\right)\right)$	finite non-solvable, regular languages
$\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$	virtually free, Baumslag-Solitar groups, RAAGs, free products, graph products PowErWP(free)
LOGSPACE	linear groups, Grigorchuk group (not know to be complete)
NC^{2}	hyperbolic groups (not know to be complete)

Overview: small circuit classes

	$\mathbb{Z} / n \mathbb{Z}$ with one monoid generator
AC^{0}	\mathbb{Z}, linear solvable, free solvable Power $\mathrm{WP}(\mathrm{Ab} i \mathbb{Z})$, PowerWP(nilpotent)
$\mathrm{NC}^{1}=\mathrm{AC}^{0}\left(\mathrm{WP}\left(A_{5}\right)\right)$	finite non-solvable, regular languages
$\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$	virtually free, Baumslag-Solitar groups, RAAGs, free products, graph products PowerWP(free)
LOGSPACE	linear groups, Grigorchuk group (not know to be complete)
NC^{2}	hyperbolic groups (not know to be complete)

Open Questions I

- Is there a natural (non-group theoretic) problem which is $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$-complete?
- Is $\mathrm{WP}\left(F_{2}\right)$ complete for $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$ under many-one reductions?
- Is there a $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$-complete problem under many-one reductions?

Open Questions I

- Is there a natural (non-group theoretic) problem which is $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$-complete?
- Is $\mathrm{WP}\left(F_{2}\right)$ complete for $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$ under many-one reductions?
- Is there a $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$-complete problem under many-one reductions?
- How does the word problem of the Grigorchuk group relate to this class?
- Precise complexity for hyperbolic groups.

Open Questions I

- Is there a natural (non-group theoretic) problem which is $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$-complete?
- Is $\mathrm{WP}\left(F_{2}\right)$ complete for $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$ under many-one reductions?
- Is there a $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$-complete problem under many-one reductions?
- How does the word problem of the Grigorchuk group relate to this class?
- Precise complexity for hyperbolic groups.

Or even more challenging:

- Separation results: $\mathrm{TC}^{0} \neq \mathrm{NC}^{1}$? $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right) \neq \mathrm{NC}^{1}$? \ldots
- Can a non-solvable group have word problem in TC^{0} ?

Power word problem in free groups

Power word problem: Given $p_{1}, \ldots, p_{k} \in \Sigma^{*}$ and $x_{1}, \ldots, x_{k} \in \mathbb{Z}$. Question: $p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}=1$ in G?

Theorem (Lohrey, W.)

The power word problem for free groups is in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$.

```
Theorem (Lohrey, W.)
\(\operatorname{PowerWP}(G * H) \in \mathrm{AC}^{0}\left(\operatorname{PowerWP}(G), \operatorname{PowerWP}(H), \mathrm{WP}\left(F_{2}\right)\right)\).
```


Power word problem in free groups

Power word problem: Given $p_{1}, \ldots, p_{k} \in \Sigma^{*}$ and $x_{1}, \ldots, x_{k} \in \mathbb{Z}$. Question: $p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}=1$ in G ?

Theorem (Lohrey, W.)

The power word problem for free groups is in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$.

```
Theorem (Lohrey, W.)
\(\operatorname{PowerWP}(G * H) \in \operatorname{AC}^{0}\left(\operatorname{PowerWP}(G), \operatorname{PowerWP}(H), \mathrm{WP}\left(F_{2}\right)\right)\).
```

Three steps:

- Preprocessing
- Make exponents small
- Solve regular word problem

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}

Example 1

$$
(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \bar{a} \bar{a}(a b)^{-1000}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}

Example 1

$$
\begin{aligned}
& (a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \bar{a} \bar{a}(a b)^{-1000} \\
& \quad=(a b)^{1000} a a b^{-100} b^{100} \overline{\bar{a}} \bar{a}(a b)^{-1000}
\end{aligned}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}

Example 1

$$
\begin{gathered}
(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \bar{a} \bar{a}(a b)^{-1000} \\
=(a b)^{1000} a \text { a } \bar{a} \bar{a}(a b)^{-1000}
\end{gathered}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}

Example 1

$$
\begin{gathered}
(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \bar{a} \bar{a}(a b)^{-1000} \\
=(a b)^{1000}(a b)^{-1000}
\end{gathered}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}

Example 1

$$
\begin{gathered}
(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \bar{a} \bar{a}(a b)^{-1000} \\
=1
\end{gathered}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}

Example 1

$$
\begin{gathered}
(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \bar{a} \bar{a}(a b)^{-1000} \\
=1
\end{gathered}
$$

Example 2

$$
b^{123}(b \text { a } a)^{123} a^{-246} b^{-123}(\bar{b} \bar{a})^{123} a^{123}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}

Example 1

$$
\begin{gathered}
(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \bar{a} \bar{a}(a b)^{-1000} \\
=1
\end{gathered}
$$

Example 2

$$
b^{123}(b \text { a } a)^{123} a^{-246} b^{-123}(\bar{b} \bar{a})^{123} a^{123} \neq 1
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}

Example 1

$$
\begin{gathered}
(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \bar{a} \bar{a}(a b)^{-1000} \\
=1
\end{gathered}
$$

Example 2

$$
b^{123}(b \text { a } a)^{123} a^{-246} b^{-123}(\bar{b} \bar{a})^{123} a^{123} \neq 1
$$

Example 3

$$
(\mathrm{a} a)^{500}(\bar{a})^{999} \bar{a}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}

Example 1

$$
\begin{gathered}
(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \bar{a} \bar{a}(a b)^{-1000} \\
=1
\end{gathered}
$$

Example 2

$$
b^{123}(b \text { a } a)^{123} a^{-246} b^{-123}(\bar{b} \bar{a})^{123} a^{123} \neq 1
$$

Example 3

$$
(\mathrm{a} a)^{500}(\bar{a})^{999} \bar{a}=1
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}
Example 1

$$
\begin{gathered}
(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \bar{a} \bar{a}(a b)^{-1000} \\
=1
\end{gathered}
$$

Example 2

$$
b^{123}(b a a)^{123} a^{-246} b^{-123}(\bar{b} \bar{a})^{123} a^{123} \neq 1
$$

Example 3

$$
(a \mathrm{a})^{500}(\bar{a})^{999} \bar{a}=1
$$

Example 4

$$
(b a \operatorname{a} \bar{a} b a)^{500}(b)^{2}(\bar{b} \bar{b} \bar{a} b)^{999}(\bar{b} \bar{a} \bar{b} \bar{b} a b)^{1}(a b)^{-1}
$$

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i.e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i.e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

$$
\Omega=\{a, b, a b, a \bar{b}, a a b, a a \bar{b}, \ldots\}
$$

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Proof.

- By (1), v=w w^{-1} as words.

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Proof.

- By (1), $v=w^{-1}$ as words. $\quad \rightsquigarrow v$ has periods $|p|$ and $|q|$.

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Proof.

- By (1), $v=w^{-1}$ as words.
$\rightsquigarrow v$ has periods $|p|$ and $|q|$.
- By Fine and Wilf's theorem v has period $\operatorname{gcd}(|p|,|q|)$.

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Proof.

- By (1), $v=w^{-1}$ as words.
$\rightsquigarrow v$ has periods $|p|$ and $|q|$.
- By Fine and Wilf's theorem v has period $\operatorname{gcd}(|p|,|q|)$.
\rightsquigarrow also p and q.

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Proof.

- By (1), v=w w^{-1} as words.
$\rightsquigarrow v$ has periods $|p|$ and $|q|$.
- By Fine and Wilf's theorem v has period $\operatorname{gcd}(|p|,|q|)$. \rightsquigarrow also p and q.
- By (2), $|p|=|q|$.

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i.e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Proof.

- By (1), v=w w^{-1} as words.
$\rightsquigarrow v$ has periods $|p|$ and $|q|$.
- By Fine and Wilf's theorem v has period $\operatorname{gcd}(|p|,|q|)$. \rightsquigarrow also p and q.
- By (2), $|p|=|q|$.
- By (3), since p is a factor of w^{-1}, we get $p=q$.

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

$$
(b a a \bar{a} b a)^{500}(b)^{2}(\bar{b} \bar{b} \bar{a} b)^{999}(\bar{b} \bar{a} \bar{b} \bar{b} a b)^{1}(a b)^{-1}
$$

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

$$
(b a a \bar{a} b a)^{500}(b)^{2}(\bar{b} \bar{b} \bar{a} b)^{999}(\bar{b} \bar{a} \bar{b} \bar{b} a b)^{1}(a b)^{-1}
$$

- Freely reduce the q_{i}.

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

$$
(b a b a)^{500}(b)^{2}(\bar{b} \bar{b} \bar{a} b)^{999}(\bar{b} \bar{a} \bar{b} \bar{b} a b)^{1}(a b)^{-1}
$$

- Freely reduce the q_{i}.

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

$$
(b a b a)^{500}(b)^{2}(\bar{b} \bar{b} \bar{a} b)^{999}(\bar{b} \bar{a} \bar{b} \bar{b} a b)^{1}(a b)^{-1}
$$

- Freely reduce the q_{i}.
- Make each q_{i} cyclically reduced.

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

$$
(b a b a)^{500}(b)^{2} \bar{b}(\bar{b} \bar{a})^{999} b \bar{b} \bar{a}(\bar{b} \bar{b})^{1} a b(a b)^{-1}
$$

- Freely reduce the q_{i}.
- Make each q_{i} cyclically reduced.

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

$$
(b a b a)^{500}(b)^{2} \bar{b}(\bar{b} \bar{a})^{999} b \bar{b} \bar{a}(\bar{b} \bar{b})^{1} a b(a b)^{-1}
$$

- Freely reduce the q_{i}.
- Make each q_{i} cyclically reduced.
- Make each q_{i} primitive.

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

$$
(b a)^{1000}(b)^{2} \bar{b}(\bar{b} \bar{a})^{999} b \bar{b} \bar{a}(\bar{b})^{2} a b(a b)^{-1}
$$

- Freely reduce the q_{i}.
- Make each q_{i} cyclically reduced.
- Make each q_{i} primitive.

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

$$
(b a)^{1000}(b)^{2} \bar{b}(\bar{b} \bar{a})^{999} b \bar{b} \bar{a}(\bar{b})^{2} a b(a b)^{-1}
$$

- Freely reduce the q_{i}.
- Make each q_{i} cyclically reduced.
- Make each q_{i} primitive.
- Make q_{i} lex. minimal in $\left\{u v \mid v u=q_{i}\right.$ or $\left.v u=q_{i}^{-1}\right\}$

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v={ }_{F} w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

$$
b(a b)^{1000} \bar{b}(b)^{2} \bar{b}(a b)^{-999} b \bar{b} \bar{a}(b)^{-2} a b(a b)^{-1}
$$

- Freely reduce the q_{i}.
- Make each q_{i} cyclically reduced.
- Make each q_{i} primitive.
- Make q_{i} lex. minimal in $\left\{u v \mid v u=q_{i}\right.$ or $\left.v u=q_{i}^{-1}\right\}$

This yields

$$
s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n}
$$

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

$$
b(a b)^{1000} \bar{b}(b)^{2} \bar{b}(a b)^{-999} b \bar{b} \bar{a}(b)^{-2} a b(a b)^{-1}
$$

- Freely reduce the q_{i}.
- Make each q_{i} cyclically reduced.
- Make each q_{i} primitive.
- Make q_{i} lex. minimal in $\left\{u v \mid v u=q_{i}\right.$ or $\left.v u=q_{i}^{-1}\right\}$

This yields

$$
s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n}
$$

- Freely reduce the s_{i}.

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v={ }_{F} w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

$$
b(a b)^{1000} \bar{b}(b)^{2} \bar{b}(a b)^{-999} \bar{a}(b)^{-2} a b(a b)^{-1}
$$

- Freely reduce the q_{i}.
- Make each q_{i} cyclically reduced.
- Make each q_{i} primitive.
- Make q_{i} lex. minimal in $\left\{u v \mid v u=q_{i}\right.$ or $\left.v u=q_{i}^{-1}\right\}$

This yields

$$
s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n}
$$

- Freely reduce the s_{i}.

Computing freely reduced words

Proposition (W., 2016)
Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.
Proof.
Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$.

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.
Proof.
Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$.

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Proof.

Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$. Define an equivalence relation $\approx \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ by

$$
i \approx j \Longleftrightarrow w_{i}=w_{j} \text { and } \begin{cases}w_{i, j}={ }_{F} 1 & \text { if } i<j, \\ w_{j, i}=F 1 & \text { if } j<i\end{cases}
$$

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Proof.

Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$. Define an equivalence relation $\approx \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ by

$$
i \approx j \Longleftrightarrow w_{i}=w_{j} \text { and } \begin{cases}w_{i, j}={ }_{F} 1 & \text { if } i<j, \\ w_{j, i}=F 1 & \text { if } j<i .\end{cases}
$$

$\rightsquigarrow i \approx j$ iff w_{i} and w_{j} are the same edge in the Cayley graph

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Proof.

Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$. Define an equivalence relation $\approx \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ by

$$
i \approx j \Longleftrightarrow w_{i}=w_{j} \text { and } \begin{cases}w_{i, j}={ }_{F} 1 & \text { if } i<j, \\ w_{j, i}=F 1 & \text { if } j<i .\end{cases}
$$

$\rightsquigarrow i \approx j$ iff w_{i} and w_{j} are the same edge in the Cayley graph

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
b & b & \bar{b} & \bar{b} & b & \bar{a} & a & \bar{b} & b
\end{array}
$$

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Proof.

Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$. Define an equivalence relation $\approx \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ by

$$
i \approx j \Longleftrightarrow w_{i}=w_{j} \text { and } \begin{cases}w_{i, j}={ }_{F} 1 & \text { if } i<j, \\ w_{j, i}=F 1 & \text { if } j<i .\end{cases}
$$

$\rightsquigarrow i \approx j$ iff w_{i} and w_{j} are the same edge in the Cayley graph

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
b & b & \bar{b} & \bar{b} & b & \bar{a} & a & \bar{b} & b
\end{array}
$$

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Proof.

Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$. Define an equivalence relation $\approx \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ by

$$
i \approx j \Longleftrightarrow w_{i}=w_{j} \text { and } \begin{cases}w_{i, j}={ }_{F} 1 & \text { if } i<j, \\ w_{j, i}=F 1 & \text { if } j<i .\end{cases}
$$

$\rightsquigarrow i \approx j$ iff w_{i} and w_{j} are the same edge in the Cayley graph

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
b & b & \bar{b} & \bar{b} & b & \bar{a} & a & \bar{b} & b
\end{array}
$$

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Proof.

Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$. Define an equivalence relation $\approx \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ by

$$
i \approx j \Longleftrightarrow w_{i}=w_{j} \text { and } \begin{cases}w_{i, j}={ }_{F} 1 & \text { if } i<j, \\ w_{j, i}=F 1 & \text { if } j<i .\end{cases}
$$

$\rightsquigarrow i \approx j$ iff w_{i} and w_{j} are the same edge in the Cayley graph

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
b & b & \bar{b} & \bar{b} & b & \bar{a} & a & \bar{b} & b
\end{array}
$$

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Proof.

Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$. Define an equivalence relation $\approx \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ by

$$
i \approx j \Longleftrightarrow w_{i}=w_{j} \text { and } \begin{cases}w_{i, j}={ }_{F} 1 & \text { if } i<j, \\ w_{j, i}=F 1 & \text { if } j<i .\end{cases}
$$

$\rightsquigarrow i \approx j$ iff w_{i} and w_{j} are the same edge in the Cayley graph

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
b & b & \bar{b} & \bar{b} & b & \bar{a} & a & \bar{b} & b
\end{array}
$$

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Proof.

Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$. Define an equivalence relation $\approx \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ by

$$
i \approx j \Longleftrightarrow w_{i}=w_{j} \text { and } \begin{cases}w_{i, j}={ }_{F} 1 & \text { if } i<j, \\ w_{j, i}=F 1 & \text { if } j<i .\end{cases}
$$

$\rightsquigarrow i \approx j$ iff w_{i} and w_{j} are the same edge in the Cayley graph

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
b & b & \bar{b} & \bar{b} & b & \bar{a} & a & \bar{b} & b \\
& w_{1,5}=1
\end{array}
$$

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Proof.

Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$. Define an equivalence relation $\approx \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ by

$$
i \approx j \Longleftrightarrow w_{i}=w_{j} \text { and } \begin{cases}w_{i, j}={ }_{F} 1 & \text { if } i<j, \\ w_{j, i}=F 1 & \text { if } j<i .\end{cases}
$$

$\rightsquigarrow i \approx j$ iff w_{i} and w_{j} are the same edge in the Cayley graph

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
b & b & \bar{b} & \bar{b} & b & \bar{a} & a & \bar{b} & b
\end{array}
$$

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Proof.

Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$. Define an equivalence relation $\approx \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ by

$$
i \approx j \Longleftrightarrow w_{i}=w_{j} \text { and } \begin{cases}w_{i, j}={ }_{F} 1 & \text { if } i<j, \\ w_{j, i}=F 1 & \text { if } j<i .\end{cases}
$$

$\rightsquigarrow i \approx j$ iff w_{i} and w_{j} are the same edge in the Cayley graph

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
b & b & \bar{b} & \bar{b} & b & \bar{a} & a & \bar{b} & b
\end{array}
$$

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Proof.

Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$. Define an equivalence relation $\approx \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ by

$$
i \approx j \Longleftrightarrow w_{i}=w_{j} \text { and } \begin{cases}w_{i, j}={ }_{F} 1 & \text { if } i<j, \\ w_{j, i}=F 1 & \text { if } j<i .\end{cases}
$$

$\rightsquigarrow i \approx j$ iff w_{i} and w_{j} are the same edge in the Cayley graph

$$
\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
b & b & \bar{b} & \bar{b} & b & \bar{a} & \underbrace{b} & \bar{b} & b \\
w_{4,8}=1
\end{array}
$$

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Proof.

Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$. Define an equivalence relation $\approx \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ by

$$
i \approx j \Longleftrightarrow w_{i}=w_{j} \text { and } \begin{cases}w_{i, j}={ }_{F} 1 & \text { if } i<j, \\ w_{j, i}=F 1 & \text { if } j<i .\end{cases}
$$

$\rightsquigarrow i \approx j$ iff w_{i} and w_{j} are the same edge in the Cayley graph

\[

\]

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Proof.

Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$. Define an equivalence relation $\approx \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ by

$$
i \approx j \Longleftrightarrow w_{i}=w_{j} \text { and } \begin{cases}w_{i, j}={ }_{F} 1 & \text { if } i<j, \\ w_{j, i}=F 1 & \text { if } j<i .\end{cases}
$$

$\rightsquigarrow i \approx j$ iff w_{i} and w_{j} are the same edge in the Cayley graph

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
b & b & \bar{b} & \bar{b} & b & \bar{a} & a & \bar{b} & b
\end{array}
$$

Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in $\left.\mathrm{AC}^{0}(\mathrm{WP}(F))\right)$.

Proof.

Input: $w=w_{1} \cdots w_{n}$ with $w_{i} \in \Sigma \cup \Sigma^{-1}$. Set $w_{i, j}=w_{i+1} \cdots w_{j}$. Define an equivalence relation $\approx \subseteq\{1, \ldots, n\} \times\{1, \ldots, n\}$ by

$$
i \approx j \Longleftrightarrow w_{i}=w_{j} \text { and } \begin{cases}w_{i, j}={ }_{F} 1 & \text { if } i<j, \\ w_{j, i}=F 1 & \text { if } j<i .\end{cases}
$$

$\rightsquigarrow i \approx j$ iff w_{i} and w_{j} are the same edge in the Cayley graph

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
b & b & \bar{b} & \bar{b} & b & \bar{a} & a & \bar{b} & b
\end{array}
$$

Can be checked in $\mathrm{AC}^{0}(\mathrm{WP}(F))$ for all pairs i, j whether $i \approx j$.

Computing freely reduced words

Proof. (Contd.)

Define a partial map

$$
\begin{aligned}
-:\{1, \ldots, n\} / \approx & \rightarrow\{1, \ldots, n\} / \approx \\
{[i] \mapsto[j] \quad } & \text { if there is some } j \text { with } w_{i}=\bar{w}_{j} \text { and } \\
& w_{i, j-1}={ }_{F} 1\left(\text { resp. } w_{j, i-1}={ }_{F} 1\right) .
\end{aligned}
$$

We have
$\triangleright[i]=\overline{[j]} \Longleftrightarrow w_{i}$ and w_{j} are inverse edges in the Cayley graph.

Computing freely reduced words

Proof. (Contd.)

Define a partial map

$$
\begin{aligned}
& -:\{1, \ldots, n\} / \approx \rightarrow\{1, \ldots, n\} / \approx \\
& {[i] \mapsto[j] \quad} \\
& \quad \begin{array}{l}
\text { if there is some } j \text { with } w_{i}=\bar{w}_{j} \text { and } \\
\\
w_{i, j-1}={ }_{F} 1\left(\text { resp. } w_{j, i-1}=F 1\right) .
\end{array}
\end{aligned}
$$

We have
$\triangleright[i]=\overline{[j]} \Longleftrightarrow w_{i}$ and w_{j} are inverse edges in the Cayley graph.

- $||[i]|-|\overline{[i]}|| \leq 1$ for all i

Computing freely reduced words

Proof. (Contd.)

Define a partial map

$$
\begin{aligned}
& -:\{1, \ldots, n\} / \approx \rightarrow\{1, \ldots, n\} / \approx \\
& {[i] \mapsto[j] \quad \text { if there is some } j \text { with } w_{i}=\bar{w}_{j} \text { and }} \\
& \\
& \quad w_{i, j-1}={ }_{F} 1\left(\text { resp. } w_{j, i-1}={ }_{F} 1\right) .
\end{aligned}
$$

We have
$\triangleright[i]=\overline{[j]} \Longleftrightarrow w_{i}$ and w_{j} are inverse edges in the Cayley graph.

- $||[i]|-|\overline{[i]}|| \leq 1$ for all i
- if $|[i]|=|[\bar{i}]|$, all letters in $[i]$ cancel

Computing freely reduced words

Proof. (Contd.)

Define a partial map

$$
\begin{aligned}
& -:\{1, \ldots, n\} / \approx \rightarrow\{1, \ldots, n\} / \approx \\
& {[i] \mapsto[j] \quad \text { if there is some } j \text { with } w_{i}=\bar{w}_{j} \text { and }} \\
& \\
& \quad w_{i, j-1}={ }_{F} 1\left(\text { resp. } w_{j, i-1}={ }_{F} 1\right) .
\end{aligned}
$$

We have
$\triangleright[i]=\overline{[j]} \Longleftrightarrow w_{i}$ and w_{j} are inverse edges in the Cayley graph.

- $||[i]|-|\overline{[i]}|| \leq 1$ for all i
- if $|[i]|=|[\bar{i}]|$, all letters in $[i]$ cancel
- if $|[i]|>|[\bar{i}]|$, after any sequence of free reductions, there remains one letter w_{j} for some $j \in[i]$.

Computing freely reduced words

Proof. (Contd.)

Define a partial map

$$
\begin{aligned}
& -:\{1, \ldots, n\} / \approx \rightarrow\{1, \ldots, n\} / \approx \\
& {[i] \mapsto[j] \quad \text { if there is some } j \text { with } w_{i}=\bar{w}_{j} \text { and }} \\
& \\
& \quad w_{i, j-1}={ }_{F} 1\left(\text { resp. } w_{j, i-1}={ }_{F} 1\right) .
\end{aligned}
$$

We have
$\triangleright[i]=\overline{[j]} \Longleftrightarrow w_{i}$ and w_{j} are inverse edges in the Cayley graph.

- $||[i]|-|\overline{[i]}|| \leq 1$ for all i
- if $|[i]|=|[\bar{i}]|$, all letters in $[i]$ cancel
- if $|[i]|>|[\bar{i}]|$, after any sequence of free reductions, there remains one letter w_{j} for some $j \in[i]$.
Output all w_{j} with $j=\max [i]$ for some i with $|[i]|>|\overline{[i]}|$ and delete the other letters.

Make exponents small

Now we have a "nice" instance

$$
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. }
$$

We know that

- if a long factor of $p_{i}^{x_{i}}$ cancels with a factor of $p_{j}^{\chi_{j}}$, then $p_{i}=p_{j}$

Make exponents small

Now we have a "nice" instance

$$
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. }
$$

We know that

- if a long factor of $p_{i}^{x_{i}}$ cancels with a factor of $p_{j}^{\chi_{j}}$, then $p_{i}=p_{j}$

Idea:

- Decrease all exponents of p_{i} simultaneously.

Make exponents small

Now we have a "nice" instance

$$
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. }
$$

We know that

- if a long factor of $p_{i}^{x_{i}}$ cancels with a factor of $p_{j}^{\chi_{j}}$, then $p_{i}=p_{j}$

Idea:

- Decrease all exponents of p_{i} simultaneously.

But: cannot delete them entirely:

$$
a^{100} b a^{-100} \bar{b} \neq 1, \text { but } a^{0} b a^{0} \bar{b}=1
$$

Make exponents small

Now we have a "nice" instance

$$
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. }
$$

We know that

- if a long factor of $p_{i}^{x_{i}}$ cancels with a factor of $p_{j}^{\chi_{j}}$, then $p_{i}=p_{j}$

Idea:

- Decrease all exponents of p_{i} simultaneously.

But: cannot delete them entirely:

$$
a^{100} b a^{-100} \bar{b} \neq 1, \text { but } a^{0} b a^{0} \bar{b}=1
$$

Nor down to 1:

$$
a^{100}(\bar{a} b a)^{1} a^{-100} \bar{b} \neq 1 \text { but } a^{1}(\bar{a} b a)^{1} a^{-1} \bar{b}=1
$$

Make exponents small

Write $w=u_{0} p^{y_{1}} u_{1} \cdots p^{y_{m}} u_{m}$ for some $p \in \Omega$ such that u_{i} does not contain p with exponents.

Make exponents small

Write $w=u_{0} p^{y_{1}} u_{1} \cdots p^{y_{m}} u_{m}$ for some $p \in \Omega$ such that u_{i} does not contain p with exponents.

Make exponents small

Write $w=u_{0} p^{y_{1}} u_{1} \cdots p^{y_{m}} u_{m}$ for some $p \in \Omega$ such that u_{i} does not contain p with exponents.

Make exponents small

Write $w=u_{0} p^{y_{1}} u_{1} \cdots p^{y_{m}} u_{m}$ for some $p \in \Omega$ such that u_{i} does not contain p with exponents.

Define $\mathcal{S}(w)=u_{0} p^{z_{1}} u_{1} \cdots p^{z_{m}} u_{m}$ where $z_{i}=y_{i}-\operatorname{sign}\left(y_{i}\right) \cdot \sum_{j \in C_{i}} d_{j}$

Make exponents small

Proposition

$$
w={ }_{F} 1 \Longleftrightarrow \mathcal{S}(w)={ }_{F} 1 .
$$

Make exponents small

Proposition

$w={ }_{F} 1 \Longleftrightarrow \mathcal{S}(w)={ }_{F} 1$.

Proof of the main theorem.

- Preprocessing gives a "nice word" $w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n}$.
- For all $p \in \Omega$ which appear in w, compute $\mathcal{S}(w)$ in parallel (iterated addition \rightsquigarrow in TC^{0}).
- Yields a word of polynomial length \rightsquigarrow apply the ordinary word problem.

Further results on the power word problem

Theorem (Lohrey, W.)

Let G be f.g. and $H \leq G$ of finite index. Then $\operatorname{PowerWP}(G)$ is NC ${ }^{1}$-many-one-reducible to PowerWP (H).

Further results on the power word problem

Theorem (Lohrey, W.)

Let G be f.g. and $H \leq G$ of finite index. Then $\operatorname{PowerWP}(G)$ is $N C^{1}$-many-one-reducible to PowerWP (H).

Corollary

The power word problem of f.g. virtually free groups is in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$.

Further results on the power word problem

Theorem (Lohrey, W.)

Let G be f.g. and $H \leq G$ of finite index. Then $\operatorname{PowerWP}(G)$ is $N C^{1}$-many-one-reducible to PowerWP (H).

Corollary

The power word problem of f.g. virtually free groups is in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$.

Theorem (Lohrey, W.)

Let G be either

- finite non-solvable
- f.g. free of rank ≥ 2.

Then $\operatorname{PowerWP}(G \imath \mathbb{Z})$ is coNP-complete.

Proof: coNP hardness

CNF-UnSAT \leq PowerWP $\left(F_{2} \backslash \mathbb{Z}\right)$:

Proof: coNP hardness

CNF-UnSAT \leq PowerWP $\left(F_{2} \backslash \mathbb{Z}\right)$:
Let $F_{2} \imath \mathbb{Z}=\langle a, b, t\rangle$; follow Robinson's proof that $\mathrm{WP}\left(F_{2}\right)$ is NC^{1}-hard:

Proof: coNP hardness

CNF-UnSAT \leq PowerWP $\left(F_{2} \backslash \mathbb{Z}\right)$:
Let $F_{2} \imath \mathbb{Z}=\langle a, b, t\rangle$; follow Robinson's proof that $\mathrm{WP}\left(F_{2}\right)$ is NC^{1}-hard:

- every CNF formula is an NC ${ }^{1}$ circuit (logarithmic depth)

Proof: coNP hardness

CNF-UnSAT \leq PowerWP $\left(F_{2} \backslash \mathbb{Z}\right)$:
Let $F_{2} \imath \mathbb{Z}=\langle a, b, t\rangle$; follow Robinson's proof that $\mathrm{WP}\left(F_{2}\right)$ is NC^{1}-hard:

- every CNF formula is an NC ${ }^{1}$ circuit (logarithmic depth)

Given a formula F over variables $\left\{X_{1}, \ldots, X_{m}\right\}$, construct a word $w_{F} \in\left(\left\{a^{ \pm 1}, b^{ \pm 1}\right\} \cup\left\{Y_{1}^{ \pm 1}, \ldots, Y_{m}^{ \pm 1}, \widetilde{Y}_{1}^{ \pm 1}, \ldots, \widetilde{Y}_{m}^{ \pm 1}\right\}\right)^{*}$ such that for any valuation $\sigma:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow\{0,1\}$

$$
\sigma(F)=0 \Longleftrightarrow \sigma^{\prime}\left(w_{F}\right)=F_{2} 1
$$

Proof: coNP hardness

CNF-UnSAT \leq PowerWP $\left(F_{2} \backslash \mathbb{Z}\right)$:
Let $F_{2} \imath \mathbb{Z}=\langle a, b, t\rangle$; follow Robinson's proof that $\mathrm{WP}\left(F_{2}\right)$ is NC^{1}-hard:

- every CNF formula is an NC ${ }^{1}$ circuit (logarithmic depth)

Given a formula F over variables $\left\{X_{1}, \ldots, X_{m}\right\}$, construct a word $w_{F} \in\left(\left\{a^{ \pm 1}, b^{ \pm 1}\right\} \cup\left\{Y_{1}^{ \pm 1}, \ldots, Y_{m}^{ \pm 1}, \widetilde{Y}_{1}^{ \pm 1}, \ldots, \widetilde{Y}_{m}^{ \pm 1}\right\}\right)^{*}$ such that for any valuation $\sigma:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow\{0,1\}$

$$
\sigma(F)=0 \Longleftrightarrow \sigma^{\prime}\left(w_{F}\right)=F_{2} 1
$$

where $\sigma^{\prime}\left(Y_{i}\right)=\left\{\begin{array}{ll}1 & \text { if } \sigma\left(X_{i}\right)=0 \\ a & \text { if } \sigma\left(X_{i}\right)=1\end{array}\right.$ and $\sigma^{\prime}\left(\widetilde{Y}_{i}\right)= \begin{cases}a & \text { if } \sigma\left(X_{i}\right)=0, \\ 1 & \text { if } \sigma\left(X_{i}\right)=1 .\end{cases}$

Proof: coNP hardness

CNF-UnSAT \leq PowerWP $\left(F_{2} \backslash \mathbb{Z}\right)$:
Let $F_{2} \imath \mathbb{Z}=\langle a, b, t\rangle$; follow Robinson's proof that $\mathrm{WP}\left(F_{2}\right)$ is NC^{1}-hard:

- every CNF formula is an NC ${ }^{1}$ circuit (logarithmic depth)

Given a formula F over variables $\left\{X_{1}, \ldots, X_{m}\right\}$, construct a word $w_{F} \in\left(\left\{a^{ \pm 1}, b^{ \pm 1}\right\} \cup\left\{Y_{1}^{ \pm 1}, \ldots, Y_{m}^{ \pm 1}, \widetilde{Y}_{1}^{ \pm 1}, \ldots, \widetilde{Y}_{m}^{ \pm 1}\right\}\right)^{*}$ such that for any valuation $\sigma:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow\{0,1\}$

$$
\sigma(F)=0 \Longleftrightarrow \sigma^{\prime}\left(w_{F}\right)=F_{2} 1
$$

where $\sigma^{\prime}\left(Y_{i}\right)=\left\{\begin{array}{ll}1 & \text { if } \sigma\left(X_{i}\right)=0 \\ a & \text { if } \sigma\left(X_{i}\right)=1\end{array}\right.$ and $\sigma^{\prime}\left(\widetilde{Y}_{i}\right)= \begin{cases}a & \text { if } \sigma\left(X_{i}\right)=0, \\ 1 & \text { if } \sigma\left(X_{i}\right)=1 .\end{cases}$

- $F \vee G \rightsquigarrow w_{F} w_{G}+$ padding

Proof: coNP hardness

CNF-UnSAT \leq PowerWP $\left(F_{2} \backslash \mathbb{Z}\right)$:
Let $F_{2} \imath \mathbb{Z}=\langle a, b, t\rangle$; follow Robinson's proof that $\mathrm{WP}\left(F_{2}\right)$ is NC^{1}-hard:

- every CNF formula is an NC ${ }^{1}$ circuit (logarithmic depth)

Given a formula F over variables $\left\{X_{1}, \ldots, X_{m}\right\}$, construct a word $w_{F} \in\left(\left\{a^{ \pm 1}, b^{ \pm 1}\right\} \cup\left\{Y_{1}^{ \pm 1}, \ldots, Y_{m}^{ \pm 1}, \widetilde{Y}_{1}^{ \pm 1}, \ldots, \widetilde{Y}_{m}^{ \pm 1}\right\}\right)^{*}$ such that for any valuation $\sigma:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow\{0,1\}$

$$
\sigma(F)=0 \Longleftrightarrow \sigma^{\prime}\left(w_{F}\right)=F_{2} 1
$$

where $\sigma^{\prime}\left(Y_{i}\right)=\left\{\begin{array}{ll}1 & \text { if } \sigma\left(X_{i}\right)=0 \\ a & \text { if } \sigma\left(X_{i}\right)=1\end{array}\right.$ and $\sigma^{\prime}\left(\widetilde{Y}_{i}\right)= \begin{cases}a & \text { if } \sigma\left(X_{i}\right)=0, \\ 1 & \text { if } \sigma\left(X_{i}\right)=1 .\end{cases}$

- $F \vee G \rightsquigarrow w_{F} w_{G}+$ padding $\rightsquigarrow a b w_{F} b w_{G} \bar{b} \bar{b} \bar{a}$

CNF-UnSAT \leq PowerWP $\left(F_{2} \backslash \mathbb{Z}\right)$:
Let $F_{2} \imath \mathbb{Z}=\langle a, b, t\rangle$; follow Robinson's proof that $\mathrm{WP}\left(F_{2}\right)$ is NC^{1}-hard:

- every CNF formula is an NC ${ }^{1}$ circuit (logarithmic depth)

Given a formula F over variables $\left\{X_{1}, \ldots, X_{m}\right\}$, construct a word $w_{F} \in\left(\left\{a^{ \pm 1}, b^{ \pm 1}\right\} \cup\left\{Y_{1}^{ \pm 1}, \ldots, Y_{m}^{ \pm 1}, \widetilde{Y}_{1}^{ \pm 1}, \ldots, \widetilde{Y}_{m}^{ \pm 1}\right\}\right)^{*}$ such that for any valuation $\sigma:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow\{0,1\}$

$$
\sigma(F)=0 \Longleftrightarrow \sigma^{\prime}\left(w_{F}\right)=F_{2} 1
$$

where $\sigma^{\prime}\left(Y_{i}\right)=\left\{\begin{array}{ll}1 & \text { if } \sigma\left(X_{i}\right)=0 \\ a & \text { if } \sigma\left(X_{i}\right)=1\end{array}\right.$ and $\sigma^{\prime}\left(\widetilde{Y}_{i}\right)= \begin{cases}a & \text { if } \sigma\left(X_{i}\right)=0, \\ 1 & \text { if } \sigma\left(X_{i}\right)=1 .\end{cases}$

- $F \vee G \rightsquigarrow w_{F} w_{G}+$ padding $\rightsquigarrow a b w_{F} b w_{G} \bar{b} \bar{b} \bar{a}$
- $F \wedge G \rightsquigarrow\left[w_{F}, w_{G}\right]+$ padding $\rightsquigarrow a\left[b w_{F} \bar{b}, b b w_{G} \bar{b} \bar{b}\right] \bar{a}$

CNF-UnSAT \leq PowerWP $\left(F_{2} \backslash \mathbb{Z}\right)$:
Let $F_{2} \imath \mathbb{Z}=\langle a, b, t\rangle$; follow Robinson's proof that $\mathrm{WP}\left(F_{2}\right)$ is NC^{1}-hard:

- every CNF formula is an NC ${ }^{1}$ circuit (logarithmic depth)

Given a formula F over variables $\left\{X_{1}, \ldots, X_{m}\right\}$, construct a word $w_{F} \in\left(\left\{a^{ \pm 1}, b^{ \pm 1}\right\} \cup\left\{Y_{1}^{ \pm 1}, \ldots, Y_{m}^{ \pm 1}, \widetilde{Y}_{1}^{ \pm 1}, \ldots, \widetilde{Y}_{m}^{ \pm 1}\right\}\right)^{*}$ such that for any valuation $\sigma:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow\{0,1\}$

$$
\sigma(F)=0 \Longleftrightarrow \sigma^{\prime}\left(w_{F}\right)=F_{2} 1
$$

where $\sigma^{\prime}\left(Y_{i}\right)=\left\{\begin{array}{ll}1 & \text { if } \sigma\left(X_{i}\right)=0 \\ a & \text { if } \sigma\left(X_{i}\right)=1\end{array}\right.$ and $\sigma^{\prime}\left(\widetilde{Y}_{i}\right)= \begin{cases}a & \text { if } \sigma\left(X_{i}\right)=0, \\ 1 & \text { if } \sigma\left(X_{i}\right)=1 .\end{cases}$

- $F \vee G \rightsquigarrow w_{F} w_{G}+$ padding $\rightsquigarrow a b w_{F} b w_{G} \bar{b} \bar{b} \bar{a}$
- $F \wedge G \rightsquigarrow\left[w_{F}, w_{G}\right]+$ padding $\rightsquigarrow a\left[b w_{F} \bar{b}, b b w_{G} \bar{b} \bar{b}\right] \bar{a}$
- logarithmic depth \rightsquigarrow polynomial size
- $F_{2} \backslash \mathbb{Z}=\langle a, b, t\rangle$.
- For any assignment $\sigma:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow\{0,1\}$

$$
\sigma(F)=0 \Longleftrightarrow \sigma^{\prime}\left(w_{F}\right)=F_{2} 1
$$

Evaluate w_{F} for all valuations "in parallel":

- $F_{2} l \mathbb{Z}=\langle a, b, t\rangle$.
- For any assignment $\sigma:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow\{0,1\}$

$$
\sigma(F)=0 \Longleftrightarrow \sigma^{\prime}\left(w_{F}\right)=F_{2} 1
$$

Evaluate w_{F} for all valuations "in parallel":
\checkmark Let $p_{1}, \ldots, p_{m} \in \mathbb{N}$ be pairwise coprime, $M=\prod p_{i}, M_{i}=M / p_{i}$

- $F_{2} 2 \mathbb{Z}=\langle a, b, t\rangle$.
- For any assignment $\sigma:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow\{0,1\}$

$$
\sigma(F)=0 \Longleftrightarrow \sigma^{\prime}\left(w_{F}\right)=F_{2} 1
$$

Evaluate w_{F} for all valuations "in parallel":

- Let $p_{1}, \ldots, p_{m} \in \mathbb{N}$ be pairwise coprime, $M=\prod p_{i}, M_{i}=M / p_{i}$
- $Y_{i} \mapsto(\underbrace{t \cdots t}_{p_{i}})^{M_{i}} t^{-M}=(\underbrace{\underbrace{1, \ldots, 1}_{p_{i}-1}, \ldots, a, \underbrace{1, \ldots, 1}_{p_{i}-1}}_{M_{i} \text { times }})$
- $F_{2} 2 \mathbb{Z}=\langle a, b, t\rangle$.
- For any assignment $\sigma:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow\{0,1\}$

$$
\sigma(F)=0 \Longleftrightarrow \sigma^{\prime}\left(w_{F}\right)=F_{2} 1
$$

Evaluate w_{F} for all valuations "in parallel":

- Let $p_{1}, \ldots, p_{m} \in \mathbb{N}$ be pairwise coprime, $M=\prod p_{i}, M_{i}=M / p_{i}$
- $Y_{i} \mapsto(a \underbrace{t \cdots t}_{p_{i}})^{M_{i}} t^{-M}=(\underbrace{\underbrace{1, \ldots, 1}_{p_{i}-1}, \ldots, a, \underbrace{1, \ldots, 1}_{p_{i}-1}}_{M_{i} \text { times }})$
$\rightsquigarrow a$ at positions $\equiv 0 \bmod p_{i}$
- $F_{2} l \mathbb{Z}=\langle a, b, t\rangle$.
- For any assignment $\sigma:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow\{0,1\}$

$$
\sigma(F)=0 \Longleftrightarrow \sigma^{\prime}\left(w_{F}\right)=F_{2} 1
$$

Evaluate w_{F} for all valuations "in parallel":

- Let $p_{1}, \ldots, p_{m} \in \mathbb{N}$ be pairwise coprime, $M=\prod p_{i}, M_{i}=M / p_{i}$
- $Y_{i} \mapsto(a \underbrace{t \cdots t}_{p_{i}})^{M_{i}} t^{-M}=(\underbrace{\underbrace{1, \ldots, 1}_{p_{i}-1}, \ldots, a, \underbrace{1, \ldots, 1}_{p_{i}-1}}_{M_{i} \text { times }})$
$\rightsquigarrow a$ at positions $\equiv 0 \bmod p_{i}$
$\tilde{Y}_{i} \mapsto(t \underbrace{a t \cdots a t}_{p_{i}-1})^{M_{i}} t^{-M}=(1, \underbrace{a, \ldots, a}_{p_{i}-1}, \ldots, 1, \underbrace{a, \ldots, a}_{p_{i}-1})$
- $F_{2} l \mathbb{Z}=\langle a, b, t\rangle$.
- For any assignment $\sigma:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow\{0,1\}$

$$
\sigma(F)=0 \Longleftrightarrow \sigma^{\prime}\left(w_{F}\right)=F_{2} 1
$$

Evaluate w_{F} for all valuations "in parallel":

- Let $p_{1}, \ldots, p_{m} \in \mathbb{N}$ be pairwise coprime, $M=\prod p_{i}, M_{i}=M / p_{i}$
- $Y_{i} \mapsto(a \underbrace{t \cdots t}_{p_{i}})^{M_{i}} t^{-M}=(\underbrace{\underbrace{1, \ldots, 1}_{p_{i}-1}, \ldots, a, \underbrace{1, \ldots, 1}_{p_{i}-1}}_{M_{i} \text { times }})$
$\rightsquigarrow a$ at positions $\equiv 0 \bmod p_{i}$
$\tilde{Y}_{i} \mapsto(t \underbrace{a t \cdots a t}_{p_{i}-1})^{M_{i}} t^{-M}=(1, \underbrace{a, \ldots, a}_{p_{i}-1}, \ldots, 1, \underbrace{a, \ldots, a}_{p_{i}-1})$
$\rightsquigarrow a$ at positions $\not \equiv 0 \bmod p_{i}$
- $F_{2} 2 \mathbb{Z}=\langle a, b, t\rangle$.
- For any assignment $\sigma:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow\{0,1\}$

$$
\sigma(F)=0 \Longleftrightarrow \sigma^{\prime}\left(w_{F}\right)=F_{2} 1
$$

Evaluate w_{F} for all valuations "in parallel":

- Let $p_{1}, \ldots, p_{m} \in \mathbb{N}$ be pairwise coprime, $M=\prod p_{i}, M_{i}=M / p_{i}$
- $Y_{i} \mapsto(\underbrace{t \underbrace{t \cdots t}}_{p_{i}})^{M_{i}} t^{-M}=(\underbrace{\underbrace{1, \ldots, 1}_{p_{i}-1}, \ldots, a, \underbrace{1, \ldots, 1}_{p_{i}-1}}_{M_{i} \text { times }})$
$\rightsquigarrow a$ at positions $\equiv 0 \bmod p_{i}$
$\tilde{Y}_{i} \mapsto(t \underbrace{a t \cdots a t}_{p_{i}-1})^{M_{i}} t^{-M}=(1, \underbrace{a, \ldots, a}_{p_{i}-1}, \ldots, 1, \underbrace{a, \ldots, a}_{p_{i}-1})$
$\rightsquigarrow a$ at positions $\not \equiv 0 \bmod p_{i}$
- By the Chinese Remainder Theorem, this tests all valuations.

Open Questions II

The proof for free groups should be generalizable to

- RAAGs (= graph groups),
- graph products,
- hyperbolic groups,
- HNN extensions and amalgamated products over finite subgroups.

Open Questions II

The proof for free groups should be generalizable to

- RAAGs (= graph groups),
- graph products,
- hyperbolic groups,
- HNN extensions and amalgamated products over finite subgroups.

Problem:

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Open Questions II

The proof for free groups should be generalizable to

- RAAGs (= graph groups),
- graph products,
- hyperbolic groups,
- HNN extensions and amalgamated products over finite subgroups.

Problem:

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.
is NOT true anymore!!

Open Questions II

The proof for free groups should be generalizable to

- RAAGs (= graph groups),
- graph products,
- hyperbolic groups,
- HNN extensions and amalgamated products over finite subgroups.

Problem:

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.
is NOT true anymore!!

Example

Let $p=q a$ with $[q, a]=1$, then q^{x} is a factor of p^{x} and cancels with q^{-x} but $p \neq q$!
\rightsquigarrow need more restrictions on Ω

Open Questions III

- What if we allow nested exponents:

$$
\left(b^{13} \bar{a}\left(\left(b a^{8} a\right)^{13} a^{-26} b^{-13}\right)^{12}\right)^{16}\left((\bar{b} \bar{a})^{13} a^{13}\right)^{20}
$$

- Conjecture: for constant nesting depth in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$ (same approach).
- Not clear what happens for unbounded nesting depth: \ldots is it P -complete? \ldots or in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$?

Open Questions III

- What if we allow nested exponents:

$$
\left(b^{13} \bar{a}\left(\left(b a^{8} a\right)^{13} a^{-26} b^{-13}\right)^{12}\right)^{16}\left((\bar{b} \bar{a})^{13} a^{13}\right)^{20}
$$

- Conjecture: for constant nesting depth in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$ (same approach).
- Not clear what happens for unbounded nesting depth: \ldots is it P-complete? ... or in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$?
- Complexity of $\operatorname{PowerWP}(G \imath \mathbb{Z})$ for G non-abelian, but not free nor finite, non-solvable (e.g. G nilpotent)?

Open Questions III

- What if we allow nested exponents:

$$
\left(b^{13} \bar{a}\left(\left(b a^{8} a\right)^{13} a^{-26} b^{-13}\right)^{12}\right)^{16}\left((\bar{b} \bar{a})^{13} a^{13}\right)^{20}
$$

- Conjecture: for constant nesting depth in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$ (same approach).
- Not clear what happens for unbounded nesting depth: \ldots is it P-complete? . . . or in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$?
- Complexity of $\operatorname{PowerWP}(G \imath \mathbb{Z})$ for G non-abelian, but not free nor finite, non-solvable (e. g. G nilpotent)?
- Complexity of PowerWP in other groups:
- Grigochuk group - what is the maximal order of an element of length n ?
- other automaton groups?
- Baumslag-Solitar groups?

Open Questions III

- What if we allow nested exponents:

$$
\left(b^{13} \bar{a}\left(\left(b a^{8} a\right)^{13} a^{-26} b^{-13}\right)^{12}\right)^{16}\left((\bar{b} \bar{a})^{13} a^{13}\right)^{20}
$$

- Conjecture: for constant nesting depth in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$ (same approach).
- Not clear what happens for unbounded nesting depth: \ldots is it P-complete? . . . or in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$?
- Complexity of $\operatorname{PowerWP}(G \imath \mathbb{Z})$ for G non-abelian, but not free nor finite, non-solvable (e. g. G nilpotent)?
- Complexity of PowerWP in other groups:
- Grigochuk group - what is the maximal order of an element of length n ?
- other automaton groups?
- Baumslag-Solitar groups?

Thank you!

