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Dehn’s fundamental problems and others

Let G be a f. g. group, generated by a finite set Σ = Σ−1 ⊆ G .

I Word problem (WP): Given w ∈ Σ∗. Question: Is w = 1 in G?

I Conjugacy problem: Given v ,w ∈ Σ∗.
Question: ∃ z ∈ G such that zvz−1 = w?

I Compressed word problem: Given a straight-line program G which
produces a word w ∈ Σ∗.

Question: Is w = 1 in G?

I Knapsack problem: Given p1, . . . , pk ,w ∈ Σ∗.
Question: ∃ x1, . . . , xk ∈ N such that px1

1 · · · p
xk
k = w?

I . . .

I Power word problem (PowerWP):
Given p1, . . . , pk ∈ Σ∗ and x1, . . . , xk ∈ Z.
Question: px1

1 · · · p
xk
k = 1 in G?
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Why is the power word problem interesting?

The power word problem is natural:

I straightforward way of compression

I for abelian groups this is the usual way of encoding

I in nilpotent groups, every element can be expressed by a power
word of logarithmic length

I binary encoded matrices in SL(2,Z) yield power words over the
generators (Gurevich, Schupp 07)(

−499 5000
−50 501

)
=

(
1 1
0 1

)10(
1 0
1 1

)50(
1 1
0 1

)−10

The power word problem helps

I to solve the knapsack problem in RAAGS (Lohrey, Zetsche, 15), . . .
I to understand the compressed word problem better:

I lower bounds
I better upper bounds in the special case.
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Complexity

Why parallel complexity?

I Finer classification of problems inside polynomial time.

I We cannot be faster than linear time on one processor,
but we can on many processors.

I Parallel computing is more and more important in the “real world”.
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Parallel Complexity

Machine models:
I PRAMs (parallel random access machines)
I (Boolean) circuits

Circuit = directed acyclic graph where each vertex is either:
I input gates (has only outgoing edges)
I Boolean gates (and ∧, or ∨, not ¬ having incoming and outgoing

edges)
I output gates (only incoming edges)
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Parallel Complexity

Machine models:
I PRAMs (parallel random access machines)
I (Boolean) circuits

Circuit = directed acyclic graph where each vertex is either:
I input gates (has only outgoing edges)
I Boolean gates (and ∧, or ∨, not ¬ having incoming and outgoing

edges)
I output gates (only incoming edges)

size = number of gates
depth = longest path from input to output gate
fan-in = number of input-wires per gate

NC = problems which can be solved by a family of circuits of
polynomial size and polylogarithmic depth and bounded fan-in.
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Parallel Complexity

Inside NC:

I NCi = solved by a family of circuits of depth O(logi n) and
polynomial size with bounded fan-in (= in-degree) ¬, ∧, ∨ gates.

Infinite hierarchy:

AC0 ( TC0 ⊆

NC1

⊆ LOGSPACE

⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ NC ⊆ P.

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)

The word problem of linear groups is in LOGSPACE.

Inside NC1:

I AC0 = solved by a family of circuits of constant depth and
polynomial size with unbounded fan-in ¬, ∧, ∨ gates.

I TC0 allows additionally majority gates:
Maj(w) = 1 iff |w |1 ≥ |w |0 for w ∈ { 0, 1 }∗.
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Word problem of Z

The word problem of Z with generators {+1,−1 } is in TC0.

Use 0 to encode −1 and 1 for 1. Let w ∈ { 0, 1 }∗,
w represents 0 in Z ⇐⇒ |w |1 = |w |0

⇐⇒ Maj(w) ∧ Maj(¬w)
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x1 x2 x3 · · · xn

Maj Maj

¬· · ·¬¬¬

∧
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Word problem of Z

The word problem of Z with generators {+1,−1 } is in TC0.

Use 0 to encode −1 and 1 for 1. Let w ∈ { 0, 1 }∗,
w represents 0 in Z ⇐⇒ |w |1 = |w |0

⇐⇒ Maj(w) ∧ Maj(¬w)

Theorem (Myasnikov, W. 2017, Lohrey, W.)

If G is f.g. nilpotent or G = H o Z for H f.g. abelian, then
PowerWP(G ) is in TC0.
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Reductions

I For a formal language L ⊆ { 0, 1 }∗, AC0(L) allows additionally
oracle gates for L.

I L′ ∈ AC0(L) means L′ is AC0-(Turing)-reducible to L.

I Every problem in TC0 is AC0-reducible to Majority.
 Majority is TC0-complete.

I TC0 = AC0(WP(Z)) ⊆ AC0(WP(F2))

I AC0(WP(F2)) ⊆ LOGSPACE

Armin Weiß Parallel Complexity 8/25



Reductions

I For a formal language L ⊆ { 0, 1 }∗, AC0(L) allows additionally
oracle gates for L.

I L′ ∈ AC0(L) means L′ is AC0-(Turing)-reducible to L.

I Every problem in TC0 is AC0-reducible to Majority.
 Majority is TC0-complete.

I TC0 = AC0(WP(Z)) ⊆ AC0(WP(F2))

I AC0(WP(F2)) ⊆ LOGSPACE

Armin Weiß Parallel Complexity 8/25



Reductions

I For a formal language L ⊆ { 0, 1 }∗, AC0(L) allows additionally
oracle gates for L.

I L′ ∈ AC0(L) means L′ is AC0-(Turing)-reducible to L.

I Every problem in TC0 is AC0-reducible to Majority.
 Majority is TC0-complete.

I TC0 = AC0(WP(Z)) ⊆ AC0(WP(F2))

I AC0(WP(F2)) ⊆ LOGSPACE

Armin Weiß Parallel Complexity 8/25



Word problem of free groups

I The word problem of free groups is in LOGSPACE (Lipton,
Zalcstein, 1977).

I WP(Fk) is NC1-hard for k ≥ 2 (Robinson, 1993).

I The compressed word problem is P-complete for k ≥ 2 (Lohrey).

Theorem (Lohrey, W.)

The power word problem for free groups is in AC0(WP(F2)).
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Overview: small circuit classes

AC0 Z/nZ with one monoid generator

TC0 Z, linear solvable, free solvable
PowerWP(Ab o Z), PowerWP(nilpotent)

NC1 = AC0(WP(A5)) finite non-solvable, regular languages

AC0(WP(F2))

virtually free, Baumslag-Solitar groups,
RAAGs, free products, graph products
PowerWP(free)

LOGSPACE linear groups, Grigorchuk group (not know to
be complete)

NC2 hyperbolic groups (not know to be complete)

P polynomial time compressed word problem of free groups,. . .

Armin Weiß Group theoretic problems in small circuit classes 10/25
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Open Questions I

I Is there a natural (non-group theoretic) problem which is
AC0(WP(F2))-complete?

I Is WP(F2) complete for AC0(WP(F2)) under many-one
reductions?

I Is there a AC0(WP(F2))-complete problem under many-one
reductions?

I How does the word problem of the Grigorchuk group relate to this
class?

I Precise complexity for hyperbolic groups.

Or even more challenging:

I Separation results: TC0 6= NC1? AC0(WP(F2)) 6= NC1?. . .

I Can a non-solvable group have word problem in TC0?
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Power word problem in free groups

Power word problem: Given p1, . . . , pk ∈ Σ∗ and x1, . . . , xk ∈ Z.
Question: px1

1 · · · p
xk
k = 1 in G?

Theorem (Lohrey, W.)

The power word problem for free groups is in AC0(WP(F2)).

Theorem (Lohrey, W.)

PowerWP(G ∗H) ∈ AC0(PowerWP(G ),PowerWP(H),WP(F2)).

Three steps:

I Preprocessing

I Make exponents small

I Solve regular word problem

Armin Weiß Power word problem in free groups 12/25



Power word problem in free groups

Power word problem: Given p1, . . . , pk ∈ Σ∗ and x1, . . . , xk ∈ Z.
Question: px1

1 · · · p
xk
k = 1 in G?

Theorem (Lohrey, W.)

The power word problem for free groups is in AC0(WP(F2)).

Theorem (Lohrey, W.)

PowerWP(G ∗H) ∈ AC0(PowerWP(G ),PowerWP(H),WP(F2)).

Three steps:

I Preprocessing

I Make exponents small

I Solve regular word problem

Armin Weiß Power word problem in free groups 12/25



Examples: Power word problem in free groups

Let F = F ({a , b }) be the free group. Write a for a−1

Example 1

(a b)1000a b−100b100a b−100b100a a (a b)−1000

=

(a b)1000a a b−100b100a a (a b)−1000

Example 2

b123(b a a)123a−246b−123(b a )123a123

6= 1

Example 3

(a a )500 (a )999 a

= 1

Example 4

(b a a a b a)500 (b)2 (b b ab)999 (b a b b a b)1(a b )−1
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Preprocessing

Ω ⊆ Σ+ is set of non-empty words p with

(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p

and p−1 (i. e., in
{
uv

∣∣ vu = p or vu = p−1
}

).

Proof.

I By (1), v = w−1 as words.  v has periods |p| and |q|.
I By Fine and Wilf’s theorem v has period gcd(|p| , |q|).

 also p and q.
I By (2), |p| = |q|.
I By (3), since p is a factor of w−1, we get p = q.
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Preprocessing

The first aim is to rewrite an input word qy1
1 · · · q

yn
n in the form

w = s0p
x1
1 s1 · · · pxnn sn with pi ∈ Ω and si freely reduced. (1)

Lemma

Given a power word v , a power word w of the form (1) with v =F w
can be computed in AC0(WP(F )).

I Freely reduce the qi .

I Make each qi cyclically reduced.

I Make each qi primitive.

I Make qi lex. minimal in
{
uv

∣∣ vu = qi or vu = q−1
i

}
This yields s0p

x1
1 s1 · · · pxnn sn

I Freely reduce the si .
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Computing freely reduced words

Proposition (W., 2016)

Freely reduced words can be computed in AC0(WP(F ))).

Proof.

Input: w = w1 · · ·wn with wi ∈ Σ ∪ Σ−1. Set wi ,j = wi+1 · · ·wj .
Define an equivalence relation ≈ ⊆ { 1, . . . , n } × { 1, . . . , n } by

i ≈ j ⇐⇒ wi = wj and

{
wi ,j =F 1 if i < j ,

wj ,i =F 1 if j < i .

 i ≈ j iff wi and wj are the same edge in the Cayley graph

1 2 3 4 5 6 7 8 9
b b b b b a a b b

w1,5 = 1w1,9 = w5,9 = 1w4,8 = 1

1

w =F b

Can be checked in AC0(WP(F )) for all pairs i , j whether i ≈ j .
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Computing freely reduced words

Proof. (Contd.)

Define a partial map

· : { 1, . . . , n }/≈ → { 1, . . . , n }/≈
[i ] 7→ [j ] if there is some j with wi = w j and

wi ,j−1 =F 1 (resp. wj ,i−1 =F 1).

We have

I [i ] = [j ] ⇐⇒ wi and wj are inverse edges in the Cayley graph.

I
∣∣∣|[i ]| − |[i ]|∣∣∣ ≤ 1 for all i

I if |[i ]| = |[i ]|, all letters in [i ] cancel

I if |[i ]| > |[i ]|, after any sequence of free reductions, there remains
one letter wj for some j ∈ [i ].

Output all wj with j = max [i ] for some i with |[i ]| > |[i ]| and delete the
other letters.
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Make exponents small

Now we have a “nice” instance

w = s0p
x1
1 s1 · · · pxnn sn with pi ∈ Ω and si freely reduced.

We know that

I if a long factor of pxii cancels with a factor of p
xj
j , then pi = pj

Idea:

I Decrease all exponents of pi simultaneously.

But: cannot delete them entirely:

a 100b a−100b 6= 1, but a 0b a 0b = 1

Nor down to 1:

a 100(a b a)1a−100b 6= 1 but a 1(a b a)1a−1b = 1
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Make exponents small

Write w = u0p
y1u1 · · · pymum for some p ∈ Ω such that ui does not

contain p with exponents.

c5

c6

c2

c3

c9

c7

c8

c1

c4

y1

y2

y3

y4

y5
y6

y7

y8

d1

d3

d4

d7

Define S(w) = u0p
z1u1 · · · pzmum where zi = yi − sign(yi ) ·

∑
j∈Ci

dj
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Make exponents small

Proposition

w =F 1 ⇐⇒ S(w) =F 1.

Proof of the main theorem.

I Preprocessing gives a “nice word” w = s0p
x1
1 s1 · · · pxnn sn.

I For all p ∈ Ω which appear in w , compute S(w) in parallel
(iterated addition  in TC0).

I Yields a word of polynomial length  apply the ordinary word
problem.

Armin Weiß Power word problem in free groups 20/25



Make exponents small

Proposition

w =F 1 ⇐⇒ S(w) =F 1.

Proof of the main theorem.

I Preprocessing gives a “nice word” w = s0p
x1
1 s1 · · · pxnn sn.

I For all p ∈ Ω which appear in w , compute S(w) in parallel
(iterated addition  in TC0).

I Yields a word of polynomial length  apply the ordinary word
problem.

Armin Weiß Power word problem in free groups 20/25



Further results on the power word problem

Theorem (Lohrey, W.)

Let G be f.g. and H ≤ G of finite index. Then PowerWP(G ) is
NC1-many-one-reducible to PowerWP(H).

Corollary

The power word problem of f.g. virtually free groups is in
AC0(WP(F2)).

Theorem (Lohrey, W.)

Let G be either

I finite non-solvable

I f.g. free of rank ≥ 2.

Then PowerWP(G o Z) is coNP-complete.
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Proof: coNP hardness

CNF-UnSAT ≤ PowerWP(F2 o Z):

Let F2 oZ = 〈a, b, t〉; follow Robinson’s proof that WP(F2) is NC1-hard:

I every CNF formula is an NC1 circuit (logarithmic depth)

Given a formula F over variables {X1, . . . ,Xm}, construct a word

wF ∈
(
{a±1, b±1} ∪ {Y±1

1 , . . . ,Y±1
m , Ỹ±1

1 , . . . , Ỹ±1
m }

)∗
such that for

any valuation σ : {X1, . . . ,Xm} → {0, 1}

σ(F ) = 0 ⇐⇒ σ′(wF ) =F2 1

where σ′(Yi ) =

{
1 if σ(Xi ) = 0

a if σ(Xi ) = 1
and σ′(Ỹi ) =

{
a if σ(Xi ) = 0,

1 if σ(Xi ) = 1.

I F ∨ G  wFwG + padding

 a b wF b wG b b a

I F ∧ G  [wF ,wG ] + padding

 a [b wFb , b b wGb b ]a

I logarithmic depth  polynomial size
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m }

)∗
such that for

any valuation σ : {X1, . . . ,Xm} → {0, 1}

σ(F ) = 0 ⇐⇒ σ′(wF ) =F2 1

where σ′(Yi ) =

{
1 if σ(Xi ) = 0

a if σ(Xi ) = 1
and σ′(Ỹi ) =
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{
a if σ(Xi ) = 0,

1 if σ(Xi ) = 1.

I F ∨ G  wFwG + padding

 a b wF b wG b b a

I F ∧ G  [wF ,wG ] + padding

 a [b wFb , b b wGb b ]a

I logarithmic depth  polynomial size

Armin Weiß Power word problem in wreath products 22/25



Proof: coNP hardness

CNF-UnSAT ≤ PowerWP(F2 o Z):

Let F2 oZ = 〈a, b, t〉; follow Robinson’s proof that WP(F2) is NC1-hard:

I every CNF formula is an NC1 circuit (logarithmic depth)

Given a formula F over variables {X1, . . . ,Xm}, construct a word

wF ∈
(
{a±1, b±1} ∪ {Y±1

1 , . . . ,Y±1
m , Ỹ±1
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1 , . . . , Ỹ±1
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{
a if σ(Xi ) = 0,

1 if σ(Xi ) = 1.

I F ∨ G  wFwG + padding  a b wF b wG b b a

I F ∧ G  [wF ,wG ] + padding  a [b wFb , b b wGb b ]a

I logarithmic depth  polynomial size

Armin Weiß Power word problem in wreath products 22/25



Proof: coNP hardness

I F2 o Z = 〈a, b, t〉.
I For any assignment σ : {X1, . . . ,Xm} → {0, 1}

σ(F ) = 0 ⇐⇒ σ′(wF ) =F2 1

Evaluate wF for all valuations “in parallel”:

I Let p1, . . . , pm ∈ N be pairwise coprime, M =
∏

pi , Mi = M/pi
I Yi 7→ (a t · · · t︸ ︷︷ ︸

pi

)Mi t−M = (a, 1, . . . , 1︸ ︷︷ ︸
pi−1

, . . . , a, 1, . . . , 1︸ ︷︷ ︸
pi−1︸ ︷︷ ︸

Mi times

)

 a at positions ≡ 0 mod pi

Ỹi 7→ (t at · · · at︸ ︷︷ ︸
pi−1

)Mi t−M = (1, a, . . . , a︸ ︷︷ ︸
pi−1

, . . . , 1, a, . . . , a︸ ︷︷ ︸
pi−1

)

 a at positions 6≡ 0 mod pi
I By the Chinese Remainder Theorem, this tests all valuations.

Armin Weiß Power word problem in wreath products 23/25



Proof: coNP hardness

I F2 o Z = 〈a, b, t〉.
I For any assignment σ : {X1, . . . ,Xm} → {0, 1}

σ(F ) = 0 ⇐⇒ σ′(wF ) =F2 1

Evaluate wF for all valuations “in parallel”:

I Let p1, . . . , pm ∈ N be pairwise coprime, M =
∏

pi , Mi = M/pi

I Yi 7→ (a t · · · t︸ ︷︷ ︸
pi

)Mi t−M = (a, 1, . . . , 1︸ ︷︷ ︸
pi−1

, . . . , a, 1, . . . , 1︸ ︷︷ ︸
pi−1︸ ︷︷ ︸

Mi times

)

 a at positions ≡ 0 mod pi
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Ỹi 7→ (t at · · · at︸ ︷︷ ︸
pi−1

)Mi t−M = (1, a, . . . , a︸ ︷︷ ︸
pi−1

, . . . , 1, a, . . . , a︸ ︷︷ ︸
pi−1

)

 a at positions 6≡ 0 mod pi
I By the Chinese Remainder Theorem, this tests all valuations.

Armin Weiß Power word problem in wreath products 23/25



Proof: coNP hardness

I F2 o Z = 〈a, b, t〉.
I For any assignment σ : {X1, . . . ,Xm} → {0, 1}

σ(F ) = 0 ⇐⇒ σ′(wF ) =F2 1

Evaluate wF for all valuations “in parallel”:

I Let p1, . . . , pm ∈ N be pairwise coprime, M =
∏

pi , Mi = M/pi
I Yi 7→ (a t · · · t︸ ︷︷ ︸

pi

)Mi t−M = (a, 1, . . . , 1︸ ︷︷ ︸
pi−1

, . . . , a, 1, . . . , 1︸ ︷︷ ︸
pi−1︸ ︷︷ ︸

Mi times

)

 a at positions ≡ 0 mod pi
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Open Questions II

The proof for free groups should be generalizable to
I RAAGs (= graph groups),
I graph products,
I hyperbolic groups,
I HNN extensions and amalgamated products over finite subgroups.

Problem:

Lemma

Let p, q ∈ Ω and v a factor of px and w a factor of qy .
If vw = 1 in F and |v | = |w | ≥ |p|+ |q| − 1, then p = q.

is NOT true anymore!!

Example

Let p = qa with [q, a] = 1, then qx is a factor of px and cancels with
q−x but p 6= q!

 need more restrictions on Ω
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Open Questions III

I What if we allow nested exponents:(
b13a

(
(b a 8a)13a−26b−13

)12
)16 (

(b a )13a13
)20

I Conjecture: for constant nesting depth in AC0(WP(F2))
(same approach).

I Not clear what happens for unbounded nesting depth:
. . . is it P-complete? . . . or in AC0(WP(F2))?

I Complexity of PowerWP(G o Z) for G non-abelian, but not free
nor finite, non-solvable (e. g. G nilpotent)?

I Complexity of PowerWP in other groups:
I Grigochuk group – what is the maximal order of an element of

length n?
I other automaton groups?
I Baumslag-Solitar groups?

Thank you!
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