Hardness of equations over finite solvable groups under the exponential time hypothesis

Armin Weiß
Universität Stuttgart, FMI

Schloss Dagstuhl 2020

Equations in groups

Equations in $(\mathbb{Z},+)$:

$$
X+X=1
$$

Equations in groups

Equations in $(\mathbb{Z},+)$:

$$
\begin{aligned}
& X+X=1 \\
& X+Y=Y+X
\end{aligned}
$$

Equations in groups

Equations in $(\mathbb{Z},+)$:

$$
\begin{aligned}
X+X & =1 \\
X+Y & =Y+X \\
X+X+X & =1+Y+Y
\end{aligned}
$$

Equations in groups

Equations in $(\mathbb{Z},+)$:

$$
\begin{aligned}
X+X & =1 \\
X+Y & =Y+X \\
X+X+X & =1+Y+Y
\end{aligned}
$$

Equations over an arbitrary group G :

$$
a X Y^{-1}=b X a Y
$$

Equations in groups

Equations in $(\mathbb{Z},+)$:

$$
\begin{aligned}
X+X & =1 \\
X+Y & =Y+X \\
X+X+X & =1+Y+Y
\end{aligned}
$$

Equations over an arbitrary group G :

$$
a X Y^{-1}=b X a Y
$$

W.I. o.g. of the form

$$
\alpha=1
$$

for an expression $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$ (with variables $\left.\mathcal{X}\right)$.

Equations in groups

The EQN-SAT(G) problem:
Constant: The group G
Input: \quad an expression $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$
Question: \exists an assignment $\sigma: \mathcal{X} \rightarrow G$ s.t. $\sigma(\alpha)=1$?

The EQN-SAT(G) problem:
Constant: The group G
Input: \quad an expression $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$
Question: \exists an assignment $\sigma: \mathcal{X} \rightarrow G$ s.t. $\sigma(\alpha)=1$?
(Almost) equivalent formulation for finite groups:
Constant: A regular language $L \subseteq \Sigma^{*}$ (with a group as syntactic monoid)
Input: \quad an expression $\alpha \in(\Sigma \cup \mathcal{X})^{*}$
Question: \exists an assignment $\sigma: \mathcal{X} \rightarrow \Sigma^{*}$ s.t. $\sigma(\alpha) \in L$?

The EQN-SAT(G) problem:
Constant: The group G
Input: \quad an expression $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$
Question: \exists an assignment $\sigma: \mathcal{X} \rightarrow G$ s.t. $\sigma(\alpha)=1$?

The EQN-ID (G) problem:
Constant: The group G
Input: \quad an expression $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$
Question: is $\sigma(\alpha)=1 \forall$ assignments $\sigma: \mathcal{X} \rightarrow G$?

In many infinite groups these problems are undecidable!

Complexity of equations in finite groups

In finite groups EQN-SAT(G) is in NP:

- Input: $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$,
- for each variable $X \in \mathcal{X}$ that appears in α, guess $\sigma(X) \in G$,
- evaluate $\sigma(\alpha)$.

Complexity of equations in finite groups

In finite groups EQN-SAT(G) is in NP:

- Input: $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$,
- for each variable $X \in \mathcal{X}$ that appears in α, guess $\sigma(X) \in G$,
- evaluate $\sigma(\alpha)$.
and $\operatorname{EQN}-\operatorname{ID}(G)$ is in coNP.

Complexity of equations in finite groups

In finite groups EQN-SAT(G) is in NP:

- Input: $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$,
- for each variable $X \in \mathcal{X}$ that appears in α, guess $\sigma(X) \in G$,
- evaluate $\sigma(\alpha)$.
and $\operatorname{EQN}-\operatorname{ID}(G)$ is in coNP.
Finer classification with respect to complexity?

Complexity of equations in finite groups

In finite groups EQN-SAT(G) is in NP:

- Input: $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$,
- for each variable $X \in \mathcal{X}$ that appears in α, guess $\sigma(X) \in G$,
- evaluate $\sigma(\alpha)$.
and $\operatorname{EQN}-\operatorname{ID}(G)$ is in coNP.
Finer classification with respect to complexity?
Observation
$\operatorname{EQN}-\operatorname{ID}(G) \leq_{T}^{\mathrm{P}} \operatorname{EQN}-\operatorname{SAT}(G)$

Complexity of equations in finite groups

In finite groups EQN-SAT(G) is in NP:

- Input: $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$,
- for each variable $X \in \mathcal{X}$ that appears in α, guess $\sigma(X) \in G$,
- evaluate $\sigma(\alpha)$.
and $\operatorname{EQN}-\operatorname{ID}(G)$ is in coNP.

Finer classification with respect to complexity?

Observation

$\operatorname{EQN}-\operatorname{ID}(G) \leq_{T}^{\mathrm{P}} \operatorname{EQN}-\operatorname{SAT}(G)$

- Input: $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$,

Complexity of equations in finite groups

In finite groups EQN-SAT(G) is in NP:

- Input: $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$,
- for each variable $X \in \mathcal{X}$ that appears in α, guess $\sigma(X) \in G$,
- evaluate $\sigma(\alpha)$.
and $\operatorname{EQN}-\operatorname{ID}(G)$ is in coNP.

Finer classification with respect to complexity?
Observation
$\operatorname{EQN}-\operatorname{ID}(G) \leq_{T}^{\mathrm{P}} \operatorname{EQN}-\operatorname{SAT}(G)$

- Input: $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$,
- for each $g \in G \backslash 1$ check whether αg^{-1} is satisfiable,

Complexity of equations in finite groups

In finite groups EQN-SAT(G) is in NP:

- Input: $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$,
- for each variable $X \in \mathcal{X}$ that appears in α, guess $\sigma(X) \in G$,
- evaluate $\sigma(\alpha)$.
and $\operatorname{EQN}-\operatorname{ID}(G)$ is in coNP.

Finer classification with respect to complexity?

Observation

$\operatorname{EQN}-\operatorname{ID}(G) \leq_{T}^{\mathrm{P}} \operatorname{EQN}-\operatorname{SAT}(G)$

- Input: $\alpha \in\left(G \cup \mathcal{X} \cup \mathcal{X}^{-1}\right)^{*}$,
- for each $g \in G \backslash 1$ check whether αg^{-1} is satisfiable,
- if yes, then α is not an identity.

Theorem (Goldmann, Russell, 2002)

- If G is non-abelian, satisfiability of systems of equations in G is NP complete.
- If G is abelian, satisfiability of systems of equations in G is in P.

Systems of equations

Theorem (Goldmann, Russell, 2002)

- If G is non-abelian, satisfiability of systems of equations in G is NP complete.
- If G is abelian, satisfiability of systems of equations in G is in P.

Remember:

- G abelian iff $x y=y x$ for all $x, y \in G$
- G solvable iff there are

$$
1=G^{(k)} \leq \cdots G^{(1)} \leq G^{(0)}=G
$$

with $G^{(i)} / G^{(i+1)}$ abelian.

Overview: complexity of equations in finite groups

Theorem (Goldmann, Russell, 2002)

- If G is nilpotent, then $\operatorname{EQN}-\operatorname{SAT}(G) \in \mathrm{P}$.

Overview: complexity of equations in finite groups

Theorem (Goldmann, Russell, 2002)

- If G is nilpotent, then $\operatorname{EQN}-\operatorname{SAT}(G) \in \mathrm{P}$.

	EQN-SAT (G)	$\operatorname{EQN}-\operatorname{ID}(G)$
nilpotent	in $\mathrm{P}\left(\right.$ actually $\left.\mathrm{ACC}^{0}\right)$	in $\mathrm{P}\left(\right.$ actually $\left.\mathrm{ACC}^{0}\right)$

Overview: complexity of equations in finite groups

Theorem (Goldmann, Russell, 2002)

- If G is nilpotent, then $\operatorname{EQN}-\operatorname{SAT}(G) \in \mathrm{P}$.
- If G is non-solvable, then EQN-SAT(G) is NP-complete.

	EQN-SAT (G)	$\operatorname{EQN}-\operatorname{ID}(G)$
nilpotent	in $\mathrm{P}\left(\right.$ actually $\left.\mathrm{ACC}^{0}\right)$	in $\mathrm{P}\left(\right.$ actually $\left.\mathrm{ACC}^{0}\right)$
non-solvable	NP-complete	

Overview: complexity of equations in finite groups

Theorem (Horváth, Lawrence, Mérai, Szabó, 2007)
If G is non-solvable, then $\operatorname{EQN}-\operatorname{ID}(G)$ is coNP-complete.

	EQN-SAT (G)	EQN-ID (G)
nilpotent	in P (actually ACC $\left.^{0}\right)$	in P $\left(\right.$ actually ACC $\left.^{0}\right)$
non-solvable	NP-complete	

Overview: complexity of equations in finite groups

Theorem (Horváth, Lawrence, Mérai, Szabó, 2007)

If G is non-solvable, then $\operatorname{EQN}-\operatorname{ID}(G)$ is coNP-complete.

	EQN-SAT (G)	EQN-ID (G)
nilpotent	in P (actually $\left.\mathrm{ACC}^{0}\right)$	in $\mathrm{P}\left(\right.$ actually $\left.\mathrm{ACC}^{0}\right)$
solvable, non-nilpotent	in NP	in coNP
non-solvable	NP-complete	

Overview: complexity of equations in finite groups

Theorem (Földvári, Horváth 2020)

- EQN-SAT $(Q \rtimes A) \in \mathrm{P}$ for Q a p-group, A abelian.

	EQN-SAT (G)	EQN-ID (G)
nilpotent	in P (actually $\left.\mathrm{ACC}^{0}\right)$	in $\mathrm{P}\left(\right.$ actually $\left.\mathrm{ACC}^{0}\right)$
	in NP	in coNP
solvable, non-nilpotent	p-group \rtimes abelian in P	
non-solvable	NP-complete	coNP-complete

Overview: complexity of equations in finite groups

Theorem (Földvári, Horváth 2020)

- EQN-SAT $(Q \rtimes A) \in \mathrm{P}$ for Q a p-group, A abelian.
- EQN-ID $(N \rtimes A) \in \mathrm{P}$ for N nilpotent, A abelian.

	EQN-SAT (G)	EQN-ID (G)
nilpotent	in $\mathrm{P}\left(\right.$ actually $\left.\mathrm{ACC}^{0}\right)$	in $\mathrm{P}\left(\right.$ actually $\left.\mathrm{ACC}^{0}\right)$
	in NP	in coNP
solvable, non-nilpotent	p-group \rtimes abelian in P	nilpotent \rtimes abelian in P
non-solvable	NP-complete	

Overview: complexity of equations in finite groups

Theorem (Földvári, Horváth 2020)

- EQN-SAT $(Q \rtimes A) \in \mathrm{P}$ for Q a p-group, A abelian.
- EQN-ID $(N \rtimes A) \in \mathrm{P}$ for N nilpotent, A abelian.

	EQN-SAT (G)	EQN-ID (G)
nilpotent	in P $\left(\right.$ actually $\left.\mathrm{ACC}^{0}\right)$	in $\mathrm{P}\left(\right.$ actually $\left.\mathrm{ACC}^{0}\right)$
	in NP	in coNP
solvable, non-nilpotent	p-group \rtimes abelian in P	nilpotent \rtimes abelian in P
	???	???
non-solvable	NP-complete	coNP-complete

The role of commutators
For showing NP-completeness: reduce 3 SAT to EQN-SAT(G)
\rightsquigarrow need to encode conjunctions/disjunctions

The role of commutators

For showing NP-completeness: reduce 3 SAT to EQN-SAT(G)
\rightsquigarrow need to encode conjunctions/disjunctions
Usually: encode false by 1 and true by $\neq 1 \in G$.

The role of commutators

For showing NP-completeness: reduce 3 SAT to EQN-SAT(G)
\rightsquigarrow need to encode conjunctions/disjunctions
Usually: encode false by 1 and true by $\neq 1 \in G$.

Consider the following problem:

- There are two nails in the wall.

The role of commutators

For showing NP-completeness: reduce 3 SAT to EQN-SAT(G)
\rightsquigarrow need to encode conjunctions/disjunctions
Usually: encode false by 1 and true by $\neq 1 \in G$.

Consider the following problem:

- There are two nails in the wall.
- You have a rope and a picture hanging on the rope.

For showing NP-completeness: reduce 3SAT to EQN-SAT(G)
\rightsquigarrow need to encode conjunctions/disjunctions
Usually: encode false by 1 and true by $\neq 1 \in G$.

Consider the following problem:

- There are two nails in the wall.
- You have a rope and a picture hanging on the rope.
- You want to wrap the rope around the nails such that, if you remove one of the nails, the picture falls down.

For showing NP-completeness: reduce 3 SAT to EQN-SAT(G)
\rightsquigarrow need to encode conjunctions/disjunctions
Usually: encode false by 1 and true by $\neq 1 \in G$.

Consider the following problem:

- There are two nails in the wall.
- You have a rope and a picture hanging on the rope.
- You want to wrap the rope around the nails such that, if you remove one of the nails, the picture falls down.

Commutators: $[x, y]=x^{-1} y^{-1} x y= \begin{cases}? ? & \text { if } x \neq 1 \text { and } y \neq 1 \\ 1 & \text { otherwise } .\end{cases}$

Examples: S_{3} and G^{*}

$S_{3}=$ group of permutations over three elements
$=$ symmetry group of a regular triangle $=\{1,(\underbrace{(12)}_{s},(13),(23),(\underbrace{123}_{d}),(132)\}$

Examples: S_{3} and G^{*}

$S_{3}=$ group of permutations over three elements
$=$ symmetry group of a regular triangle
$=\{1,(\underbrace{12}_{s}),(13),(23),(\underbrace{123}_{d}),(132)\}$
$=C_{3} \rtimes C_{2}$

$S_{3}=$ group of permutations over three elements
$=$ symmetry group of a regular triangle

$$
\begin{aligned}
& =\{1,(\underbrace{12)}_{s},(13),(23),(\underbrace{123}_{d}),(132)\} \\
& =C_{3} \rtimes C_{2} \\
& =F(\{s, d\}) /\left\{s^{2}=d^{3}=1, d s=s d^{2}\right\}
\end{aligned}
$$

$S_{3}=$ group of permutations over three elements
$=$ symmetry group of a regular triangle

$$
\begin{aligned}
& =\{1,(\underbrace{12)}_{s},(13),(23),(\underbrace{123}_{d}),(132)\} \\
& =C_{3} \rtimes C_{2} \\
& =F(\{s, d\}) /\left\{s^{2}=d^{3}=1, d s=s d^{2}\right\}
\end{aligned}
$$

$$
\rightsquigarrow \quad[d, s]=d^{-1} s^{-1} d s=d^{-1} d^{-1}=d
$$

Examples: S_{3} and G^{*}

$$
G^{*}=G_{648,705}=\left(S_{3} \times S_{3} \times S_{3}\right) \rtimes C_{3}
$$

$$
\text { with } a(x, y, z)=(z, x, y) a
$$

The Fitting length
Commutators: $[x, y]=x^{-1} y^{-1} x y$ and $\left[x_{1}, \ldots, x_{k}\right]=\left[\left[x_{1}, \ldots, x_{k-1}\right], x_{k}\right]$

The Fitting length

Commutators: $[x, y]=x^{-1} y^{-1} x y$ and $\left[x_{1}, \ldots, x_{k}\right]=\left[\left[x_{1}, \ldots, x_{k-1}\right], x_{k}\right]$
G is nilpotent of class c if $\forall x_{1}, \ldots, x_{c+1} \in G:\left[x_{1}, \ldots, x_{c+1}\right]=1$.

The Fitting length

Commutators: $[x, y]=x^{-1} y^{-1} x y$ and $\left[x_{1}, \ldots, x_{k}\right]=\left[\left[x_{1}, \ldots, x_{k-1}\right], x_{k}\right]$
G is nilpotent of class c if $\forall x_{1}, \ldots, x_{c+1} \in G:\left[x_{1}, \ldots, x_{c+1}\right]=1$.
The Fitting length FitLen (G) (nilpotent length) of G is the smallest k such that there are normal subgroups

$$
1=N_{0} \triangleleft N_{1} \triangleleft \cdots \triangleleft N_{k}=G
$$

with N_{i} / N_{i-1} nilpotent for all $i=1, \ldots, k$.

The Fitting length

Commutators: $[x, y]=x^{-1} y^{-1} x y$ and $\left[x_{1}, \ldots, x_{k}\right]=\left[\left[x_{1}, \ldots, x_{k-1}\right], x_{k}\right]$
G is nilpotent of class c if $\forall x_{1}, \ldots, x_{c+1} \in G:\left[x_{1}, \ldots, x_{c+1}\right]=1$.
The Fitting length FitLen (G) (nilpotent length) of G is the smallest k such that there are normal subgroups

$$
1=N_{0} \triangleleft N_{1} \triangleleft \cdots \triangleleft N_{k}=G
$$

with N_{i} / N_{i-1} nilpotent for all $i=1, \ldots, k$.

Example

$\operatorname{FitLen}\left(S_{3}\right)=2: 1 \triangleleft C_{3} \triangleleft S_{3}$ with $S_{3} / C_{3}=C_{2}$

The Fitting length

Commutators: $[x, y]=x^{-1} y^{-1} x y$ and $\left[x_{1}, \ldots, x_{k}\right]=\left[\left[x_{1}, \ldots, x_{k-1}\right], x_{k}\right]$
G is nilpotent of class c if $\forall x_{1}, \ldots, x_{c+1} \in G:\left[x_{1}, \ldots, x_{c+1}\right]=1$.
The Fitting length FitLen (G) (nilpotent length) of G is the smallest k such that there are normal subgroups

$$
1=N_{0} \triangleleft N_{1} \triangleleft \cdots \triangleleft N_{k}=G
$$

with N_{i} / N_{i-1} nilpotent for all $i=1, \ldots, k$.

Example

$\operatorname{FitLen}\left(S_{3}\right)=2: 1 \triangleleft C_{3} \triangleleft S_{3}$ with $S_{3} / C_{3}=C_{2}$
FitLen $\left(G^{*}\right)=3: 1 \triangleleft\left(C_{3} \times C_{3} \times C_{3}\right) \triangleleft\left(S_{3} \times S_{3} \times S_{3}\right) \triangleleft G^{*}$

The Fitting length

Commutators: $[x, y]=x^{-1} y^{-1} x y$ and $\left[x_{1}, \ldots, x_{k}\right]=\left[\left[x_{1}, \ldots, x_{k-1}\right], x_{k}\right]$
G is nilpotent of class c if $\forall x_{1}, \ldots, x_{c+1} \in G:\left[x_{1}, \ldots, x_{c+1}\right]=1$.
The Fitting length FitLen (G) (nilpotent length) of G is the smallest k such that there are normal subgroups

$$
1=N_{0} \triangleleft N_{1} \triangleleft \cdots \triangleleft N_{k}=G
$$

with N_{i} / N_{i-1} nilpotent for all $i=1, \ldots, k$.

Example

$\operatorname{FitLen}\left(S_{3}\right)=2: 1 \triangleleft C_{3} \triangleleft S_{3}$ with $S_{3} / C_{3}=C_{2}$
$\operatorname{FitLen}\left(G^{*}\right)=3: 1 \triangleleft\left(C_{3} \times C_{3} \times C_{3}\right) \triangleleft\left(S_{3} \times S_{3} \times S_{3}\right) \triangleleft G^{*}$

- $\left(S_{3} \times S_{3} \times S_{3}\right) /\left(C_{3} \times C_{3} \times C_{3}\right)=\left(C_{2} \times C_{2} \times C_{2}\right)$
- $G^{*} /\left(S_{3} \times S_{3} \times S_{3}\right)=C_{3}$

Exponential time hypothesis

Exponential time hypothesis (ETH)

$\exists \delta>0$ s.t. every algorithm for 3 SAT needs time $\Omega\left(2^{\delta n}\right)$
($n=$ number of variables).

Exponential time hypothesis (ETH)

$\exists \delta>0$ s.t. every algorithm for 3 SAT needs time $\Omega\left(2^{\delta n}\right)$
($n=$ number of variables).

Sparsification Lemma (Impagliazzo, Paturi, Zane, 2001)

ETH $\Longrightarrow \exists \epsilon>0$ s.t. every algorithm for 3 SAT needs time $\Omega\left(2^{\epsilon(m+n)}\right)$ ($m=$ number of clauses).

Exponential time hypothesis (ETH)

$\exists \delta>0$ s.t. every algorithm for 3 SAT needs time $\Omega\left(2^{\delta n}\right)$
($n=$ number of variables).

Sparsification Lemma (Impagliazzo, Paturi, Zane, 2001)

ETH $\Longrightarrow \exists \epsilon>0$ s.t. every algorithm for 3SAT needs time $\Omega\left(2^{\epsilon(m+n)}\right)$ ($m=$ number of clauses).
\rightsquigarrow no $2^{o(n+m)}$-time algorithm for 3SAT under ETH.

Theorem (W., ICALP 2020)

Let G be finite solvable group and assume that either

- $\operatorname{FitLen}(G) \geq 4$, or
- FitLen $(G)=3$ and there is no Fitting-length-two normal subgroup whose index is a power of two.

Theorem (W., ICALP 2020)

Let G be finite solvable group and assume that either

- FitLen $(G) \geq 4$, or
- FitLen $(G)=3$ and there is no Fitting-length-two normal subgroup whose index is a power of two.
Then EQN-SAT (G) and EQN-ID (G) cannot be decided in time $2^{\circ\left(\log ^{2} N\right)}$ under ETH.

Theorem (W., ICALP 2020)

Let G be finite solvable group and assume that either

- FitLen $(G) \geq 4$, or
- FitLen $(G)=3$ and there is no Fitting-length-two normal subgroup whose index is a power of two.
Then EQN-SAT (G) and EQN-ID (G) cannot be decided in time $2^{\circ\left(\log ^{2} N\right)}$ under ETH. In particular, $\mathrm{EQN}-\mathrm{SAT}(\mathrm{G})$ and $\mathrm{EQN}-\mathrm{ID}(G)$ are not in P under ETH .

Theorem (W., ICALP 2020)

Let G be finite solvable group and assume that either

- FitLen $(G) \geq 4$, or
- FitLen $(G)=3$ and there is no Fitting-length-two normal subgroup whose index is a power of two.
Then EQN-SAT (G) and EQN-ID (G) cannot be decided in time $2^{\circ\left(\log ^{2} N\right)}$ under ETH. In particular, $\mathrm{EQN}-\mathrm{SAT}(\mathrm{G})$ and $\mathrm{EQN}-\mathrm{ID}(G)$ are not in P under ETH .

What about other groups of Fitting-length three?

Main results

Theorem (W., ICALP 2020)

Let G be finite solvable group and assume that either

- FitLen $(G) \geq 4$, or
- FitLen $(G)=3$ and there is no Fitting-length-two normal subgroup whose index is a power of two.
Then EQN-SAT (G) and EQN-ID (G) cannot be decided in time $2^{o\left(\log ^{2} N\right)}$ under ETH. In particular, $\mathrm{EQN}-\mathrm{SAT}(\mathrm{G})$ and $\mathrm{EQN}-\mathrm{ID}(G)$ are not in P under ETH .

What about other groups of Fitting-length three?
Theorem (Idziak, Kawałek, Krzaczkowski, LICS 2020)
$\operatorname{EQN}-\mathrm{SAT}\left(S_{4}\right)$ and $\mathrm{EQN}-\mathrm{ID}\left(S_{4}\right)$ are not in P under ETH.
($S_{4}=$ symmetric group on 4 elements)

Theorem (Idziak, Kawałek, Krzaczkowski, W.)

Let G be finite solvable group of Fitting length $d \geq 3$. Then $\operatorname{EQN}-\operatorname{SAT}(G)$ and $\operatorname{EQN}-\operatorname{ID}(G)$ cannot be decided in time $2^{\circ\left(\log ^{d-1} N\right)}$ under ETH.

In particular, $\mathrm{EQN}-\mathrm{SAT}(\mathrm{G})$ and $\mathrm{EQN}-\mathrm{ID}(G)$ are not in P under ETH .

A C-coloring for $C \in \mathbb{N}$ of a graph $\Gamma=(V, E)$ is a map $\chi: V \rightarrow[1 . . C]$. A coloring χ valid if $\chi(u) \neq \chi(v)$ whenever $\{u, v\} \in E$.

A C-coloring for $C \in \mathbb{N}$ of a graph $\Gamma=(V, E)$ is a map $\chi: V \rightarrow[1 . . C]$. A coloring χ valid if $\chi(u) \neq \chi(v)$ whenever $\{u, v\} \in E$.

The C-Coloring problem:
Input: given an undirected graph $\Gamma=(V, E)$ Question: \exists a valid C-coloring of Γ ?

A C-coloring for $C \in \mathbb{N}$ of a graph $\Gamma=(V, E)$ is a map $\chi: V \rightarrow[1 . . C]$. A coloring χ valid if $\chi(u) \neq \chi(v)$ whenever $\{u, v\} \in E$.

The C-Coloring problem:
Input: given an undirected graph $\Gamma=(V, E)$
Question: \exists a valid C-coloring of Γ ?

- NP-complete for $C \geq 3$
- 3-Coloring cannot be solved in time $2^{o(|V|+|E|)}$ unless ETH fails (see e.g. Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh, Thm. 14.6).
- \rightsquigarrow for every $C \geq 3$, C-Coloring cannot be solved in time $2^{\circ(|V|+|E|)}$ unless ETH fails.

Reduce 2-Coloring to EQN-SAT $\left(S_{3}\right)$

$$
\begin{aligned}
\Gamma=(V, E) \text { graph with } \begin{aligned}
V & =\{1, \ldots, n\} \\
E & =\left\{e_{1}, \ldots, e_{m}\right\} \text { where } e_{k}=\left\{i_{k}, j_{k}\right\}
\end{aligned},=\text {. }
\end{aligned}
$$

Reduce 2-Coloring to EQN-SAT $\left(S_{3}\right)$

$$
\begin{aligned}
& \Gamma=(V, E) \text { graph with } V=\{1, \ldots, n\} \\
& E=\left\{e_{1}, \ldots, e_{m}\right\} \text { where } e_{k}=\left\{i_{k}, j_{k}\right\}
\end{aligned}
$$

- For every vertex i introduce a variable X_{i}.

Reduce 2-Coloring to EQN-SAT $\left(S_{3}\right)$

$$
\begin{aligned}
& \Gamma=(V, E) \text { graph with } V=\{1, \ldots, n\} \\
& E=\left\{e_{1}, \ldots, e_{m}\right\} \text { where } e_{k}=\left\{i_{k}, j_{k}\right\}
\end{aligned}
$$

- For every vertex i introduce a variable X_{i}.
- For every edge $e_{k}=\left\{i_{k}, j_{k}\right\}$ set $\alpha_{k}=X_{i_{k}} X_{j_{k}}^{-1}$.

Reduce 2-Coloring to EQN-SAT $\left(S_{3}\right)$

$$
\begin{aligned}
& \Gamma=(V, E) \text { graph with } V=\{1, \ldots, n\} \\
& E=\left\{e_{1}, \ldots, e_{m}\right\} \text { where } e_{k}=\left\{i_{k}, j_{k}\right\}
\end{aligned}
$$

- For every vertex i introduce a variable X_{i}.
- For every edge $e_{k}=\left\{i_{k}, j_{k}\right\}$ set $\alpha_{k}=X_{i_{k}} X_{j_{k}}^{-1}$.
- Set $\beta=\left[d, \alpha_{1}, \ldots, \alpha_{m}\right]=\left[\cdots\left[\left[d, \alpha_{1}\right], \alpha_{2}\right], \ldots, \alpha_{m}\right]($ recall $d=(123))$.

Reduce 2-Coloring to EQN-SAT $\left(S_{3}\right)$

$$
\begin{aligned}
& \Gamma=(V, E) \text { graph with } V=\{1, \ldots, n\} \\
& E=\left\{e_{1}, \ldots, e_{m}\right\} \text { where } e_{k}=\left\{i_{k}, j_{k}\right\}
\end{aligned}
$$

- For every vertex i introduce a variable X_{i}.
- For every edge $e_{k}=\left\{i_{k}, j_{k}\right\}$ set $\alpha_{k}=X_{i_{k}} X_{j_{k}}^{-1}$.
- Set $\beta=\left[d, \alpha_{1}, \ldots, \alpha_{m}\right]=\left[\cdots\left[\left[d, \alpha_{1}\right], \alpha_{2}\right], \ldots, \alpha_{m}\right]($ recall $d=(123))$.

Claim

$\beta=d$ is satisfiable \Longleftrightarrow 「 is 2-colorable.

Reduce 2-Coloring to EQN-SAT $\left(S_{3}\right)$

$$
\begin{aligned}
& \Gamma=(V, E) \text { graph with } V=\{1, \ldots, n\} \\
& E=\left\{e_{1}, \ldots, e_{m}\right\} \text { where } e_{k}=\left\{i_{k}, j_{k}\right\}
\end{aligned}
$$

- For every vertex i introduce a variable X_{i}.
- For every edge $e_{k}=\left\{i_{k}, j_{k}\right\}$ set $\alpha_{k}=X_{i_{k}} X_{j_{k}}^{-1}$.
- Set $\beta=\left[d, \alpha_{1}, \ldots, \alpha_{m}\right]=\left[\cdots\left[\left[d, \alpha_{1}\right], \alpha_{2}\right], \ldots, \alpha_{m}\right]($ recall $d=(123))$.

Claim

$\beta=d$ is satisfiable \Longleftrightarrow 「 is 2-colorable.

Proof.

Recall: $C_{3} \triangleleft S_{3}$ and $S_{3} / C_{3}=C_{2}$. Let $\sigma:\left\{X_{1}, \ldots, X_{n}\right\} \rightarrow G$.

Reduce 2-Coloring to EQN-SAT $\left(S_{3}\right)$

$$
\begin{aligned}
& \Gamma=(V, E) \text { graph with } V=\{1, \ldots, n\} \\
& E=\left\{e_{1}, \ldots, e_{m}\right\} \text { where } e_{k}=\left\{i_{k}, j_{k}\right\}
\end{aligned}
$$

- For every vertex i introduce a variable X_{i}.
- For every edge $e_{k}=\left\{i_{k}, j_{k}\right\}$ set $\alpha_{k}=X_{i_{k}} X_{j_{k}}^{-1}$.
- Set $\beta=\left[d, \alpha_{1}, \ldots, \alpha_{m}\right]=\left[\cdots\left[\left[d, \alpha_{1}\right], \alpha_{2}\right], \ldots, \alpha_{m}\right]($ recall $d=(123))$.

Claim

$\beta=d$ is satisfiable $\Longleftrightarrow \Gamma$ is 2-colorable.

Proof.

Recall: $C_{3} \triangleleft S_{3}$ and $S_{3} / C_{3}=C_{2}$. Let $\sigma:\left\{X_{1}, \ldots, X_{n}\right\} \rightarrow G$.
Define a coloring $\chi_{\sigma}: V \rightarrow\{1,2\}$ by $\chi_{\sigma}(i)=1 \Longleftrightarrow \sigma\left(X_{i}\right) \in C_{3}$.

Reduce 2-CoLORING to $\mathrm{EQN}-\mathrm{SAT}\left(\mathrm{S}_{3}\right)$

$$
\begin{aligned}
& \Gamma=(V, E) \text { graph with } V=\{1, \ldots, n\} \\
& E=\left\{e_{1}, \ldots, e_{m}\right\} \text { where } e_{k}=\left\{i_{k}, j_{k}\right\}
\end{aligned}
$$

- For every vertex i introduce a variable X_{i}.
- For every edge $e_{k}=\left\{i_{k}, j_{k}\right\}$ set $\alpha_{k}=X_{i_{k}} X_{j_{k}}^{-1}$.
- Set $\beta=\left[d, \alpha_{1}, \ldots, \alpha_{m}\right]=\left[\cdots\left[\left[d, \alpha_{1}\right], \alpha_{2}\right], \ldots, \alpha_{m}\right]($ recall $d=(123))$.

Claim

$\beta=d$ is satisfiable $\Longleftrightarrow \Gamma$ is 2-colorable.

Proof.

Recall: $C_{3} \triangleleft S_{3}$ and $S_{3} / C_{3}=C_{2}$. Let $\sigma:\left\{X_{1}, \ldots, X_{n}\right\} \rightarrow G$.
Define a coloring $\chi_{\sigma}: V \rightarrow\{1,2\}$ by $\chi_{\sigma}(i)=1 \Longleftrightarrow \sigma\left(X_{i}\right) \in C_{3}$.
$\sigma\left(\left[d, \alpha_{1}\right]\right)= \begin{cases}1 & \text { if } \sigma\left(\alpha_{1}\right) \in C_{3} \\ d & \text { if } \sigma\left(\alpha_{1}\right) \notin C_{3}\end{cases}$

Reduce 2-CoLORING to $\mathrm{EQN}-\mathrm{SAT}\left(\mathrm{S}_{3}\right)$

$$
\begin{aligned}
& \Gamma=(V, E) \text { graph with } V=\{1, \ldots, n\} \\
& E=\left\{e_{1}, \ldots, e_{m}\right\} \text { where } e_{k}=\left\{i_{k}, j_{k}\right\}
\end{aligned}
$$

- For every vertex i introduce a variable X_{i}.
- For every edge $e_{k}=\left\{i_{k}, j_{k}\right\}$ set $\alpha_{k}=X_{i_{k}} X_{j_{k}}^{-1}$.
- Set $\beta=\left[d, \alpha_{1}, \ldots, \alpha_{m}\right]=\left[\cdots\left[\left[d, \alpha_{1}\right], \alpha_{2}\right], \ldots, \alpha_{m}\right]($ recall $d=(123))$.

Claim

$\beta=d$ is satisfiable $\Longleftrightarrow \Gamma$ is 2-colorable.

Proof.

Recall: $C_{3} \triangleleft S_{3}$ and $S_{3} / C_{3}=C_{2}$. Let $\sigma:\left\{X_{1}, \ldots, X_{n}\right\} \rightarrow G$.
Define a coloring $\chi_{\sigma}: V \rightarrow\{1,2\}$ by $\chi_{\sigma}(i)=1 \Longleftrightarrow \sigma\left(X_{i}\right) \in C_{3}$.

$$
\sigma\left(\left[d, \alpha_{1}\right]\right)=\left\{\begin{array}{ll}
1 & \text { if } \sigma\left(\alpha_{1}\right) \in C_{3} \\
d & \text { if } \sigma\left(\alpha_{1}\right) \notin C_{3}
\end{array} \Longleftrightarrow \chi_{\sigma}\left(i_{1}\right) \neq \chi_{\sigma}\left(j_{1}\right)\right.
$$

Reduce 2-Coloring to EQN-SAT $\left(S_{3}\right)$

$$
\begin{aligned}
\Gamma=(V, E) \text { graph with } \begin{aligned}
V & =\{1, \ldots, n\} \\
E & =\left\{e_{1}, \ldots, e_{m}\right\} \text { where } e_{k}=\left\{i_{k}, j_{k}\right\}
\end{aligned},=\text {. }
\end{aligned}
$$

- For every vertex i introduce a variable X_{i}.
- For every edge $e_{k}=\left\{i_{k}, j_{k}\right\}$ set $\alpha_{k}=X_{i_{k}} X_{j_{k}}^{-1}$.
- Set $\beta=\left[d, \alpha_{1}, \ldots, \alpha_{m}\right]=\left[\cdots\left[\left[d, \alpha_{1}\right], \alpha_{2}\right], \ldots, \alpha_{m}\right]($ recall $d=(123))$.

Length: $|\beta| \approx 2^{m}$.

$$
\begin{aligned}
{\left[d, \alpha_{1}\right] } & =d^{-1} \alpha_{1}^{-1} d \alpha_{1} \\
{\left[d, \alpha_{1}, \alpha_{2}\right] } & =\alpha_{1}^{-1} d^{-1} \alpha_{1} d \alpha_{2}^{-1} d^{-1} \alpha_{1}^{-1} d \alpha_{1} \alpha_{2} \\
{\left[d, \alpha_{1}, \alpha_{2}, \alpha_{3}\right] } & =\alpha_{2}^{-1} \alpha_{1}^{-1} d^{-1} \alpha_{1} d \alpha_{2} d^{-1} \alpha_{1}^{-1} d \alpha_{1} \alpha_{3}^{-1} \alpha_{1}^{-1} d^{-1} \alpha_{1} d \alpha_{2}^{-1} d^{-1} \alpha_{1}-1 d \alpha_{1} \alpha_{2} \alpha_{3}
\end{aligned}
$$

Reduce the size of the equation

Reduce the size of the equation

Reduce 3-Coloring to EQN-SAT(G*)
Recall: $G^{*}=\left(S_{3} \times S_{3} \times S_{3}\right) \rtimes C_{3}$

Reduce 3-Coloring to EQN-SAT(G*)

Recall: $G^{*}=\left(S_{3} \times S_{3} \times S_{3}\right) \rtimes C_{3}$
$\Gamma=(V, E)$ graph with $V=\{1, \ldots, n\}, E=\left\{e_{1}, \ldots, e_{m}\right\}$.

Reduce 3-Coloring to EQN-SAT($\left.G^{*}\right)$

Recall: $G^{*}=\left(S_{3} \times S_{3} \times S_{3}\right) \rtimes C_{3}$
$\Gamma=(V, E)$ graph with $V=\{1, \ldots, n\}, E=\left\{e_{1}, \ldots, e_{m}\right\}$.

- For every vertex i introduce a variable X_{i}.

Reduce 3-Coloring to EQN-SAT($\left.G^{*}\right)$

Recall: $G^{*}=\left(S_{3} \times S_{3} \times S_{3}\right) \rtimes C_{3}$
$\Gamma=(V, E)$ graph with $V=\{1, \ldots, n\}, E=\left\{e_{1}, \ldots, e_{m}\right\}$.

- For every vertex i introduce a variable X_{i}.
- Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
- For every edge $e_{k, \ell}=\left\{i_{k, \ell}, j_{k, \ell}\right\}$ set $\alpha_{k, \ell}=X_{i_{k, \ell}} X_{j_{k, \ell}}^{-1}$.

Reduce 3-Coloring to EQN-SAT($\left.G^{*}\right)$

Recall: $G^{*}=\left(S_{3} \times S_{3} \times S_{3}\right) \rtimes C_{3}$
$\Gamma=(V, E)$ graph with $V=\{1, \ldots, n\}, E=\left\{e_{1}, \ldots, e_{m}\right\}$.

- For every vertex i introduce a variable X_{i}.
- Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
- For every edge $e_{k, \ell}=\left\{i_{k, \ell}, j_{k, \ell}\right\}$ set $\alpha_{k, \ell}=X_{i_{k, \ell}} X_{j_{k, \ell}}^{-1}$.
- Set $\beta_{k}=Y_{k}^{-1}\left[(s, 1,1), \alpha_{k, 1}, \ldots, \alpha_{k, \mu}\right] Y_{k}$ for a new variable Y_{k}.

Reduce 3-Coloring to EQN-SAT($\left.G^{*}\right)$

Recall: $G^{*}=\left(S_{3} \times S_{3} \times S_{3}\right) \rtimes C_{3}$
$\Gamma=(V, E)$ graph with $V=\{1, \ldots, n\}, E=\left\{e_{1}, \ldots, e_{m}\right\}$.

- For every vertex i introduce a variable X_{i}.
- Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
- For every edge $e_{k, \ell}=\left\{i_{k, \ell}, j_{k, \ell}\right\}$ set $\alpha_{k, \ell}=X_{i_{k, \ell}} X_{j_{k, \ell}}^{-1}$.
- Set $\beta_{k}=Y_{k}^{-1}\left[(s, 1,1), \alpha_{k, 1}, \ldots, \alpha_{k, \mu}\right] Y_{k}$ for a new variable Y_{k}.
- Set $\gamma=\left[(d, 1,1), \beta_{1}, \ldots, \beta_{\mu}\right]$.

Reduce 3-Coloring to EQN-SAT($\left.G^{*}\right)$

Recall: $G^{*}=\left(S_{3} \times S_{3} \times S_{3}\right) \rtimes C_{3}$
$\Gamma=(V, E)$ graph with $V=\{1, \ldots, n\}, E=\left\{e_{1}, \ldots, e_{m}\right\}$.

- For every vertex i introduce a variable X_{i}.
- Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
- For every edge $e_{k, \ell}=\left\{i_{k, \ell}, j_{k, \ell}\right\}$ set $\alpha_{k, \ell}=X_{i_{k, \ell}} X_{j_{k, \ell}}^{-1}$.
- Set $\beta_{k}=Y_{k}^{-1}\left[(s, 1,1), \alpha_{k, 1}, \ldots, \alpha_{k, \mu}\right] Y_{k}$ for a new variable Y_{k}.
- Set $\gamma=\left[(d, 1,1), \beta_{1}, \ldots, \beta_{\mu}\right]$.

Claim

$\gamma=(d, 1,1)$ is satisfiable $\Longleftrightarrow \Gamma$ is 3-colorable.

Reduce 3-Coloring to EQN-SAT(G*)

Recall: $G^{*}=\left(S_{3} \times S_{3} \times S_{3}\right) \rtimes C_{3}$
$\Gamma=(V, E)$ graph with $V=\{1, \ldots, n\}, E=\left\{e_{1}, \ldots, e_{m}\right\}$.

- For every vertex i introduce a variable X_{i}.
- Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
- For every edge $e_{k, \ell}=\left\{i_{k, \ell}, j_{k, \ell}\right\}$ set $\alpha_{k, \ell}=X_{i_{k, \ell}} X_{j_{k, \ell}}^{-1}$.
- Set $\beta_{k}=Y_{k}^{-1}\left[(s, 1,1), \alpha_{k, 1}, \ldots, \alpha_{k, \mu}\right] Y_{k}$ for a new variable Y_{k}.
- Set $\gamma=\left[(d, 1,1), \beta_{1}, \ldots, \beta_{\mu}\right]$.

Key Observation

$\left|\beta_{k}\right| \approx 2^{\mu} \rightsquigarrow|\gamma| \approx 2^{\mu} \cdot 2^{\mu} \approx 2^{2 \sqrt{m}}$

Reduce 3-Coloring to EQN-SAT(G*)

Recall: $G^{*}=\left(S_{3} \times S_{3} \times S_{3}\right) \rtimes C_{3}$
$\Gamma=(V, E)$ graph with $V=\{1, \ldots, n\}, E=\left\{e_{1}, \ldots, e_{m}\right\}$.

- For every vertex i introduce a variable X_{i}.
- Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
- For every edge $e_{k, \ell}=\left\{i_{k, \ell}, j_{k, \ell}\right\}$ set $\alpha_{k, \ell}=X_{i_{k, \ell}} X_{j_{k, \ell}}^{-1}$.
- Set $\beta_{k}=Y_{k}^{-1}\left[(s, 1,1), \alpha_{k, 1}, \ldots, \alpha_{k, \mu}\right] Y_{k}$ for a new variable Y_{k}.
- Set $\gamma=\left[(d, 1,1), \beta_{1}, \ldots, \beta_{\mu}\right]$.

Key Observation

$\left|\beta_{k}\right| \approx 2^{\mu} \rightsquigarrow|\gamma| \approx 2^{\mu} \cdot 2^{\mu} \approx 2^{2 \sqrt{m}}$

Reduce 3-Coloring to EQN-SAT(G*)

Recall: $G^{*}=\left(S_{3} \times S_{3} \times S_{3}\right) \rtimes C_{3}$
$\Gamma=(V, E)$ graph with $V=\{1, \ldots, n\}, E=\left\{e_{1}, \ldots, e_{m}\right\}$.

- For every vertex i introduce a variable X_{i}.
- Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
- For every edge $e_{k, \ell}=\left\{i_{k, \ell}, j_{k, \ell}\right\}$ set $\alpha_{k, \ell}=X_{i_{k, \ell}} X_{j_{k, \ell}}^{-1}$.
- Set $\beta_{k}=Y_{k}^{-1}\left[(s, 1,1), \alpha_{k, 1}, \ldots, \alpha_{k, \mu}\right] Y_{k}$ for a new variable Y_{k}.
- Set $\gamma=\left[(d, 1,1), \beta_{1}, \ldots, \beta_{\mu}\right]$.

Key Observation

$\left|\beta_{k}\right| \approx 2^{\mu} \rightsquigarrow|\gamma| \approx 2^{\mu} \cdot 2^{\mu} \approx 2^{2 \sqrt{m}}$
Assume EQN-SAT $\left(G^{*}\right)$ decidable in time $2^{\circ\left(\log ^{2} N\right)}(N=$ equation length $)$.

Reduce 3-Coloring to EQN-SAT($\left.G^{*}\right)$

Recall: $G^{*}=\left(S_{3} \times S_{3} \times S_{3}\right) \rtimes C_{3}$
$\Gamma=(V, E)$ graph with $V=\{1, \ldots, n\}, E=\left\{e_{1}, \ldots, e_{m}\right\}$.

- For every vertex i introduce a variable X_{i}.
- Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
- For every edge $e_{k, \ell}=\left\{i_{k, \ell}, j_{k, \ell}\right\}$ set $\alpha_{k, \ell}=X_{i_{k, \ell}} X_{j_{k, \ell}}^{-1}$.
- Set $\beta_{k}=Y_{k}^{-1}\left[(s, 1,1), \alpha_{k, 1}, \ldots, \alpha_{k, \mu}\right] Y_{k}$ for a new variable Y_{k}.
- Set $\gamma=\left[(d, 1,1), \beta_{1}, \ldots, \beta_{\mu}\right]$.

Key Observation

$\left|\beta_{k}\right| \approx 2^{\mu} \rightsquigarrow|\gamma| \approx 2^{\mu} \cdot 2^{\mu} \approx 2^{2 \sqrt{m}}$
Assume EQN-SAT $\left(G^{*}\right)$ decidable in time $2^{\circ\left(\log ^{2} N\right)}$ ($N=$ equation length $)$. Then we can solve 3-Coloring in time $2^{\circ(n+m)}$:
with $N=2^{2 \sqrt{m}}$ we have $2^{o\left(\log ^{2} 2^{2 \sqrt{m}}\right)}=2^{o\left(\sqrt{m}^{2}\right)}=2^{o(m)}$

Reduce 3-Coloring to EQN-SAT($\left.G^{*}\right)$

Recall: $G^{*}=\left(S_{3} \times S_{3} \times S_{3}\right) \rtimes C_{3}$
$\Gamma=(V, E)$ graph with $V=\{1, \ldots, n\}, E=\left\{e_{1}, \ldots, e_{m}\right\}$.

- For every vertex i introduce a variable X_{i}.
- Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
- For every edge $e_{k, \ell}=\left\{i_{k, \ell}, j_{k, \ell}\right\}$ set $\alpha_{k, \ell}=X_{i_{k, \ell}} X_{j_{k, \ell}}^{-1}$.
- Set $\beta_{k}=Y_{k}^{-1}\left[(s, 1,1), \alpha_{k, 1}, \ldots, \alpha_{k, \mu}\right] Y_{k}$ for a new variable Y_{k}.
- Set $\gamma=\left[(d, 1,1), \beta_{1}, \ldots, \beta_{\mu}\right]$.

Key Observation

$\left|\beta_{k}\right| \approx 2^{\mu} \rightsquigarrow|\gamma| \approx 2^{\mu} \cdot 2^{\mu} \approx 2^{2 \sqrt{m}}$
Assume EQN-SAT $\left(G^{*}\right)$ decidable in time $2^{\circ\left(\log ^{2} N\right)}$ ($N=$ equation length $)$. Then we can solve 3-Coloring in time $2^{\circ(n+m)}$:
with $N=2^{2 \sqrt{m}}$ we have $2^{o\left(\log ^{2} 2^{2 \sqrt{m}}\right)}=2^{o\left(\sqrt{m}^{2}\right)}=2^{o(m)}$ contradicting ETH.

Reduction for other groups

Let G be a finite solvable group of Fitting length $d \geq 3$.

Reduction for other groups

Let G be a finite solvable group of Fitting length $d \geq 3$.
Find a "nice" normal subgroup $H \leq G$.

- If $|G / H|=C \geq 3$, reduce C-Coloring:
- group edges into $\sqrt[d-1]{m}$ groups, each group again into $\sqrt[d-1]{m}$ groups,...
- need to take some care to which values our expressions can evaluate.

Reduction for other groups

Let G be a finite solvable group of Fitting length $d \geq 3$.
Find a "nice" normal subgroup $H \leq G$.

- If $|G / H|=C \geq 3$, reduce C-Coloring:
- group edges into $\sqrt[d-1]{m}$ groups, each group again into $\sqrt[d-1]{m}$ groups,...
- need to take some care to which values our expressions can evaluate.
- If $|G / H|=2$, reduce 3SAT:

Reduction for other groups

Let G be a finite solvable group of Fitting length $d \geq 3$.
Find a "nice" normal subgroup $H \leq G$.

- If $|G / H|=C \geq 3$, reduce C-Coloring:
- group edges into $\sqrt[d-1]{m}$ groups, each group again into $\sqrt[d-1]{m}$ groups,...
- need to take some care to which values our expressions can evaluate.
- If $|G / H|=2$, reduce 3SAT:
- 1 means false, $g \in G \backslash H$ means true $X\left[X, Y_{1}, Y_{2}, Y_{3}\right]^{-1}$ simulates $\left(X, Y_{1}, Y_{2}, Y_{3}\right) \mapsto X \wedge\left(\neg Y_{1} \vee \neg Y_{2} \vee \neg Y_{3}\right)$

Reduction for other groups

Let G be a finite solvable group of Fitting length $d \geq 3$.
Find a "nice" normal subgroup $H \leq G$.

- If $|G / H|=C \geq 3$, reduce C-Coloring:
- group edges into $\sqrt[d-1]{m}$ groups, each group again into $\sqrt[d-1]{m}$ groups,...
- need to take some care to which values our expressions can evaluate.
- If $|G / H|=2$, reduce 3SAT:
- 1 means false, $g \in G \backslash H$ means true
$X\left[X, Y_{1}, Y_{2}, Y_{3}\right]^{-1}$ simulates $\left(X, Y_{1}, Y_{2}, Y_{3}\right) \mapsto X \wedge\left(\neg Y_{1} \vee \neg Y_{2} \vee \neg Y_{3}\right)$
if $[X, g, g, g]=X$.

G-programs

ProgramsAT(G)

Constant: The group G
Input: a G-program $P \in(\mathcal{X} \times G \times G)^{*}$
Question: \exists an assignment $\sigma: \mathcal{X} \rightarrow\{0,1\}$ s.t. $\sigma(P)=1$?

Observation

$$
\operatorname{EQN}-\operatorname{SAT}(G) \leq_{m}^{\mathrm{P}} \operatorname{ProgramSAT}(G)
$$

\rightsquigarrow all lower bounds also apply to ProgramSAT(G)

G-programs

ProgramSAT(G)

Constant: The group G
Input: a G-program $P \in(\mathcal{X} \times G \times G)^{*}$
Question: \exists an assignment $\sigma: \mathcal{X} \rightarrow\{0,1\}$ s.t. $\sigma(P)=1$?

Observation

$$
\operatorname{EQN}-\operatorname{SAT}(G) \leq_{m}^{\mathrm{P}} \operatorname{ProgramSAT}(G)
$$

\rightsquigarrow all lower bounds also apply to ProgramSAT(G)

Theorem (Barrington, McKenzie, Moore, Tesson, Thérien, 2000)
If the n-input AND function can be computed via G-programs of polynomial length, then ProgramSAT($G \imath C_{k}$) is NP-complete (for $k \geq 4$).

Does a similar result hold for EQN-SAT or EQN-ID?

Two expressions as input.
Theorem (Barrington, McKenzie, Moore, Tesson, Thérien, 2000)
There is a 4-element monoid M such that EQN-SAT(M) is NP-complete.

Two expressions as input.
Theorem (Barrington, McKenzie, Moore, Tesson, Thérien, 2000)
There is a 4-element monoid M such that EQN-SAT(M) is NP-complete.

Corollary

If a semi-group S has a group divisor of Fitting length at least 3, then EQN-SAT(S) is not in P under ETH.

Two expressions as input.
Theorem (Barrington, McKenzie, Moore, Tesson, Thérien, 2000)
There is a 4-element monoid M such that EQN-SAT(M) is NP-complete.

Corollary

If a semi-group S has a group divisor of Fitting length at least 3, then EQN-SAT(S) is not in P under ETH.

What about EQN-ID?

Conclusion / Open Problems

- Quasipolynomial lower bound for $\operatorname{EQN}-\operatorname{SAT}(G)$ and $\operatorname{EQN}-\operatorname{ID}(G)$ under ETH if G if of Fitting length 3.
- Matching upper bounds?
- Quasipolynomial lower bound for $\operatorname{EQN}-\operatorname{SAT}(G)$ and $\operatorname{EQN}-\operatorname{ID}(G)$ under ETH if G if of Fitting length 3.
- Matching upper bounds?
- What about groups of Fitting length two?
- EQN-SAT in P for p-groups by abelian groups.
- EQN-ID in P for nilpotent-by-abelian groups.
- EQN-SAT $\left(D_{15}\right)$ and similar groups not in P under ETH (Idziak, Kawałek, Krzaczkowski).
- Their proof also works for showing that ProgramSAT ($S_{3} \times A_{4}$) (and similar groups) is not in P under ETH.
- Smallest unknown example: $\left(C_{2} \times C_{2} \times C_{3}\right) \rtimes C_{2}$.
- Complexity of versions without constants?
- What if the group is part of the input?
- Quasipolynomial lower bound for $\operatorname{EQN}-\operatorname{SAT}(G)$ and $\operatorname{EQN}-\operatorname{ID}(G)$ under ETH if G if of Fitting length 3.
- Matching upper bounds?
- What about groups of Fitting length two?
- EQN-SAT in P for p-groups by abelian groups.
- EQN-ID in P for nilpotent-by-abelian groups.
- EQN-SAT $\left(D_{15}\right)$ and similar groups not in P under ETH (Idziak, Kawałek, Krzaczkowski).
- Their proof also works for showing that ProgramSAT ($S_{3} \times A_{4}$) (and similar groups) is not in P under ETH.
- Smallest unknown example: $\left(C_{2} \times C_{2} \times C_{3}\right) \rtimes C_{2}$.
- Complexity of versions without constants?
- What if the group is part of the input?

Thank you!

