Hardness of equations over finite solvable groups under the exponential time hypothesis

Armin Weiß

Universität Stuttgart, FMI

Schloss Dagstuhl 2020

X + X = 1

$$X + X = 1$$
$$X + Y = Y + X$$

$$X + X = 1$$
$$X + Y = Y + X$$
$$X + X + X = 1 + Y + Y$$

$$X + X = 1$$
$$X + Y = Y + X$$
$$X + X + X = 1 + Y + Y$$

Equations over an arbitrary group G:

$$aXY^{-1} = bXaY$$

$$X + X = 1$$
$$X + Y = Y + X$$
$$X + X + X = 1 + Y + Y$$

Equations over an arbitrary group G:

$$aXY^{-1} = bXaY$$

 $W.\,I.\,o.\,g.$ of the form

$$\alpha = 1$$

for an expression $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$ (with variables \mathcal{X}).

The EQN-SAT(G) problem:

Constant:The group GInput:an expression $\alpha \in (G \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$ Question: \exists an assignment $\sigma : \mathcal{X} \to G$ s.t. $\sigma(\alpha) = 1$?

The EQN-SAT(G) problem:

Constant:	The group <i>G</i>
Input:	an expression $lpha \in ({\sf G} \cup {\cal X} \cup {\cal X}^{-1})^*$
Question:	\exists an assignment $\sigma: \mathcal{X} ightarrow G$ s.t. $\sigma(lpha) = 1$?

(Almost) equivalent formulation for finite groups:

Constant: A regular language $L \subseteq \Sigma^*$ (with a group as syntactic monoid) **Input:** an expression $\alpha \in (\Sigma \cup \mathcal{X})^*$ **Question:** \exists an assignment $\sigma : \mathcal{X} \to \Sigma^*$ s.t. $\sigma(\alpha) \in L$?

The EQN-SAT(G) problem:

Constant:	The group <i>G</i>
Input:	an expression $lpha \in ({ extsf{G}} \cup { extsf{X}} \cup { extsf{X}}^{-1})^*$
Question:	\exists an assignment $\sigma: \mathcal{X} \to G$ s.t. $\sigma(\alpha) = 1$?

The EQN-ID(G) problem:

```
\begin{array}{lll} \textbf{Constant:} & \text{The group } \mathcal{G} \\ \textbf{Input:} & \text{an expression } \alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^* \\ \textbf{Question:} & \text{is } \sigma(\alpha) = 1 \ \forall \text{ assignments } \sigma : \mathcal{X} \to \mathcal{G}? \end{array}
```

In many infinite groups these problems are undecidable!

In finite groups EQN-SAT(G) is in NP:

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each variable $X \in \mathcal{X}$ that appears in α , guess $\sigma(X) \in G$,
- evaluate $\sigma(\alpha)$.

In finite groups EQN-SAT(G) is in NP:

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each variable $X \in \mathcal{X}$ that appears in α , guess $\sigma(X) \in G$,

• evaluate $\sigma(\alpha)$.

and EQN-ID(G) is in coNP.

In finite groups EQN-SAT(G) is in NP:

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each variable $X \in \mathcal{X}$ that appears in α , guess $\sigma(X) \in G$,

• evaluate $\sigma(\alpha)$.

and EQN-ID(G) is in coNP.

Finer classification with respect to complexity?

In finite groups EQN-SAT(G) is in NP:

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each variable $X \in \mathcal{X}$ that appears in α , guess $\sigma(X) \in G$,
- evaluate $\sigma(\alpha)$.

and EQN-ID(G) is in coNP.

Finer classification with respect to complexity?

Observation EQN-ID(G) \leq_{τ}^{P} EQN-SAT(G)

In finite groups EQN-SAT(G) is in NP:

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each variable $X \in \mathcal{X}$ that appears in α , guess $\sigma(X) \in G$,
- evaluate $\sigma(\alpha)$.

and EQN-ID(G) is in coNP.

Finer classification with respect to complexity?

Observation $EQN-ID(\mathcal{G}) \leq_{\mathcal{T}}^{P} EQN-SAT(\mathcal{G})$

▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,

In finite groups EQN-SAT(G) is in NP:

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each variable $X \in \mathcal{X}$ that appears in α , guess $\sigma(X) \in G$,
- evaluate $\sigma(\alpha)$.

and EQN-ID(G) is in coNP.

Finer classification with respect to complexity?

Observation

$\operatorname{EQN-ID}(G) \leq^{\mathsf{P}}_{\mathcal{T}} \operatorname{EQN-SAT}(G)$

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each $g \in G \setminus 1$ check whether αg^{-1} is satisfiable,

In finite groups EQN-SAT(G) is in NP:

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each variable $X \in \mathcal{X}$ that appears in α , guess $\sigma(X) \in G$,
- evaluate $\sigma(\alpha)$.

and EQN-ID(G) is in coNP.

Finer classification with respect to complexity?

Observation

$\operatorname{EQN-ID}(G) \leq^{\mathsf{P}}_{\mathcal{T}} \operatorname{EQN-SAT}(G)$

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each $g \in G \setminus 1$ check whether αg^{-1} is satisfiable,
- \blacktriangleright if yes, then α is not an identity.

Theorem (Goldmann, Russell, 2002)

- ▶ If G is non-abelian, satisfiability of systems of equations in G is NP complete.
- ▶ If G is abelian, satisfiability of systems of equations in G is in P.

Theorem (Goldmann, Russell, 2002)

- ▶ If G is non-abelian, satisfiability of systems of equations in G is NP complete.
- ▶ If G is abelian, satisfiability of systems of equations in G is in P.

Remember:

- G abelian iff xy = yx for all $x, y \in G$
- ► G solvable iff there are

$$1 = G^{(k)} \leq \cdots G^{(1)} \leq G^{(0)} = G$$

with $G^{(i)}/G^{(i+1)}$ abelian.

Theorem (Goldmann, Russell, 2002)

▶ If G is nilpotent, then $EQN-SAT(G) \in P$.

Theorem (Goldmann, Russell, 2002)

▶ If G is nilpotent, then $EQN-SAT(G) \in P$.

	EQN-SAT(G)	EQN-ID(G)
nilpotent	in P (actually ACC ⁰)	in P (actually ACC ⁰)

Theorem (Goldmann, Russell, 2002)

▶ If G is nilpotent, then $EQN-SAT(G) \in P$.

▶ If G is non-solvable, then EQN-SAT(G) is NP-complete.

	EQN-SAT(G)	EQN-ID(G)
nilpotent	in P (actually ACC ⁰)	in P (actually ACC ⁰)
non-solvable	ND complete	
non-solvable	NP-complete	

Theorem (Horváth, Lawrence, Mérai, Szabó, 2007)

If G is non-solvable, then EQN-ID(G) is coNP-complete.

	$ ext{EQN-SAT}(G)$	EQN-ID(G)
nilpotent	in P (actually ACC ⁰)	in P (actually ACC ⁰)
non-solvable	NP-complete	coNP-complete

Theorem (Horváth, Lawrence, Mérai, Szabó, 2007)

If G is non-solvable, then EQN-ID(G) is coNP-complete.

	EQN-SAT(G)	EQN-ID(G)
nilpotent	in P (actually ACC ⁰)	in P (actually ACC ⁰)
solvable, non-nilpotent	in NP	in coNP
non-solvable	NP-complete	coNP-complete

Theorem (Földvári, Horváth 2020)

▶ EQN-SAT($Q \rtimes A$) ∈ P for Q a p-group, A abelian.

	EQN-SAT(G)	EQN-ID(G)
nilpotent	in P (actually ACC ⁰)	in P (actually ACC ⁰)
	in NP	in coNP
solvable, non-nilpotent	<i>p-group</i> ⋊ <i>abelian</i> in P	
non-solvable	NP-complete	coNP-complete

Theorem (Földvári, Horváth 2020)

- ▶ EQN-SAT($Q \rtimes A$) ∈ P for Q a p-group, A abelian.
- ▶ EQN-ID($N \rtimes A$) ∈ P for N nilpotent, A abelian.

	EQN-SAT(G)	EQN-ID(G)
nilpotent	in P (actually ACC ⁰)	in P (actually ACC ⁰)
	in NP	in coNP
solvable, non-nilpotent	<i>p-group</i> ⋊ <i>abelian</i> in P	<i>nilpotent</i> ⋊ <i>abelian</i> in P
non-solvable	NP-complete	coNP-complete

Theorem (Földvári, Horváth 2020)

- ▶ EQN-SAT($Q \rtimes A$) ∈ P for Q a p-group, A abelian.
- ▶ EQN-ID($N \rtimes A$) ∈ P for N nilpotent, A abelian.

	EQN-SAT(G)	EQN-ID(G)
nilpotent	in P (actually ACC ⁰)	in P (actually ACC ⁰)
	in NP	in coNP
solvable, non-nilpotent	<i>p-group</i> ⋊ <i>abelian</i> in P	<i>nilpotent</i> ⋊ <i>abelian</i> in P
	???	???
non-solvable	NP-complete	coNP-complete

For showing NP-completeness: reduce 3SAT to EQN-SAT(G) \rightarrow need to encode conjunctions/disjunctions

For showing NP-completeness: reduce 3SAT to EQN-SAT(G) \rightarrow need to encode conjunctions/disjunctions

Usually: encode false by 1 and true by $\neq 1 \in G$.

For showing NP-completeness: reduce 3SAT to EQN-SAT(G) \rightarrow need to encode conjunctions/disjunctions

Usually: encode false by 1 and true by $\neq 1 \in G$.

Consider the following problem:

There are two nails in the wall.

For showing NP-completeness: reduce 3SAT to EQN-SAT(G) \rightsquigarrow need to encode conjunctions/disjunctions

Usually: encode false by 1 and true by $\neq 1 \in G$.

Consider the following problem:

- There are two nails in the wall.
- You have a rope and a picture hanging on the rope.

For showing NP-completeness: reduce 3SAT to EQN-SAT(G) \rightsquigarrow need to encode conjunctions/disjunctions

Usually: encode false by 1 and true by $\neq 1 \in G$.

Consider the following problem:

- There are two nails in the wall.
- You have a rope and a picture hanging on the rope.
- You want to wrap the rope around the nails such that, if you remove one of the nails, the picture falls down.

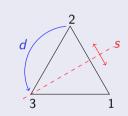
For showing NP-completeness: reduce 3SAT to EQN-SAT(G) \rightsquigarrow need to encode conjunctions/disjunctions

Usually: encode false by 1 and true by $\neq 1 \in G$.

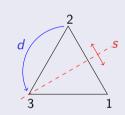
Consider the following problem:

- There are two nails in the wall.
- You have a rope and a picture hanging on the rope.
- You want to wrap the rope around the nails such that, if you remove one of the nails, the picture falls down.

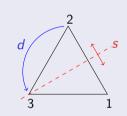
Commutators:
$$[x, y] = x^{-1}y^{-1}xy = \begin{cases} ?? & \text{if } x \neq 1 \text{ and } y \neq 1 \\ 1 & \text{otherwise.} \end{cases}$$



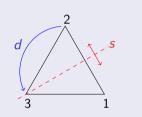
 S_3 = group of permutations over three elements = symmetry group of a regular triangle $= \{1, (12), (13), (23), (123), (132)\}$



 $S_{3} = \text{group of permutations over three elements}$ = symmetry group of a regular triangle = $\{1, (12), (13), (23), (123), (132)\}$ = $C_{3} \rtimes C_{2}$



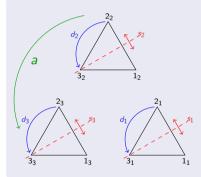
 $S_{3} = \text{group of permutations over three elements}$ = symmetry group of a regular triangle = $\{1, (12), (13), (23), (123), (132)\}$ = $C_{3} \rtimes C_{2}$ = $F(\{s, d\}) / \{s^{2} = d^{3} = 1, ds = sd^{2}\}$



 $S_{3} = \text{group of permutations over three elements}$ = symmetry group of a regular triangle = $\{1, (12), (13), (23), (123), (132)\}$ = $C_{3} \rtimes C_{2}$ = $F(\{s, d\}) / \{s^{2} = d^{3} = 1, ds = sd^{2}\}$

$$\rightsquigarrow \quad [d,s] = d^{-1}s^{-1}ds = d^{-1}d^{-1} = d$$

Examples: S_3 and G^*



$$G^* = G_{648,705} = (S_3 \times S_3 \times S_3) \rtimes C_3$$

with $a(x, y, z) = (z, x, y)a$

Commutators:
$$[x,y] = x^{-1}y^{-1}xy$$
 and $[x_1,\ldots,x_k] = \left[[x_1,\ldots,x_{k-1}],x_k\right]$

Commutators: $[x, y] = x^{-1}y^{-1}xy$ and $[x_1, \dots, x_k] = [[x_1, \dots, x_{k-1}], x_k]$

G is nilpotent of class c if $\forall x_1, \ldots, x_{c+1} \in G$: $[x_1, \ldots, x_{c+1}] = 1$.

Commutators:
$$[x, y] = x^{-1}y^{-1}xy$$
 and $[x_1, \dots, x_k] = [[x_1, \dots, x_{k-1}], x_k]$

G is nilpotent of class c if $\forall x_1, \ldots, x_{c+1} \in G : [x_1, \ldots, x_{c+1}] = 1$.

The Fitting length FitLen(G) (nilpotent length) of G is the smallest k such that there are normal subgroups

$$1 = N_0 \lhd N_1 \lhd \cdots \lhd N_k = G$$

with N_i/N_{i-1} nilpotent for all $i = 1, \ldots, k$.

Commutators:
$$[x,y] = x^{-1}y^{-1}xy$$
 and $[x_1,\ldots,x_k] = \left[[x_1,\ldots,x_{k-1}],x_k\right]$

G is nilpotent of class c if $\forall x_1, \ldots, x_{c+1} \in G : [x_1, \ldots, x_{c+1}] = 1$.

The Fitting length FitLen(G) (nilpotent length) of G is the smallest k such that there are normal subgroups

$$1 = N_0 \lhd N_1 \lhd \cdots \lhd N_k = G$$

with N_i/N_{i-1} nilpotent for all $i = 1, \ldots, k$.

Example

FitLen(S_3) = 2: 1 \triangleleft $C_3 \triangleleft$ S_3 with $S_3/C_3 = C_2$

Commutators:
$$[x,y] = x^{-1}y^{-1}xy$$
 and $[x_1,\ldots,x_k] = \left[[x_1,\ldots,x_{k-1}],x_k\right]$

G is nilpotent of class c if $\forall x_1, \ldots, x_{c+1} \in G : [x_1, \ldots, x_{c+1}] = 1$.

The Fitting length FitLen(G) (nilpotent length) of G is the smallest k such that there are normal subgroups

$$1 = N_0 \lhd N_1 \lhd \cdots \lhd N_k = G$$

with N_i/N_{i-1} nilpotent for all $i = 1, \ldots, k$.

Example

FitLen $(S_3) = 2$: $1 \triangleleft C_3 \triangleleft S_3$ with $S_3/C_3 = C_2$

 $\mathsf{FitLen}(G^*) = 3: \ 1 \lhd (C_3 \times C_3 \times C_3) \lhd (S_3 \times S_3 \times S_3) \lhd G^*$

Commutators:
$$[x, y] = x^{-1}y^{-1}xy$$
 and $[x_1, \dots, x_k] = [[x_1, \dots, x_{k-1}], x_k]$

G is nilpotent of class c if $\forall x_1, \ldots, x_{c+1} \in G : [x_1, \ldots, x_{c+1}] = 1$.

The Fitting length FitLen(G) (nilpotent length) of G is the smallest k such that there are normal subgroups

$$1 = N_0 \lhd N_1 \lhd \cdots \lhd N_k = G$$

with N_i/N_{i-1} nilpotent for all $i = 1, \ldots, k$.

Example FitLen(S_3) = 2: 1 \triangleleft $C_3 \triangleleft$ S_3 with $S_3/C_3 = C_2$ FitLen(G^*) = 3: 1 \triangleleft ($C_3 \times C_3 \times C_3$) \triangleleft ($S_3 \times S_3 \times S_3$) \triangleleft G^* \triangleright ($S_3 \times S_3 \times S_3$)/($C_3 \times C_3 \times C_3$) = ($C_2 \times C_2 \times C_2$) \triangleright $G^*/(S_3 \times S_3 \times S_3) = C_3$

Exponential time hypothesis (ETH)

 $\exists \delta > 0 \text{ s.t. every algorithm for } 3SAT \text{ needs time } \Omega(2^{\delta n})$ (*n* = number of variables).

Exponential time hypothesis (ETH)

 $\exists \delta > 0 \text{ s.t. every algorithm for } 3SAT \text{ needs time } \Omega(2^{\delta n})$ (*n* = number of variables).

Sparsification Lemma (Impagliazzo, Paturi, Zane, 2001)

ETH $\implies \exists \epsilon > 0 \text{ s.t. every algorithm for } 3SAT \text{ needs time } \Omega(2^{\epsilon(m+n)})$ (*m* = number of clauses).

Exponential time hypothesis (ETH)

 $\exists \delta > 0$ s.t. every algorithm for 3SAT needs time $\Omega(2^{\delta n})$ (n = number of variables).

Sparsification Lemma (Impagliazzo, Paturi, Zane, 2001)

ETH $\implies \exists \epsilon > 0 \text{ s.t. every algorithm for } 3SAT \text{ needs time } \Omega(2^{\epsilon(m+n)})$ (*m* = number of clauses).

 \rightsquigarrow no $2^{o(n+m)}$ -time algorithm for 3SAT under ETH.

Let G be finite solvable group and assume that either

- FitLen(G) \geq 4, or
- FitLen(G) = 3 and there is no Fitting-length-two normal subgroup whose index is a power of two.

Let G be finite solvable group and assume that either

- FitLen(G) \geq 4, or
- FitLen(G) = 3 and there is no Fitting-length-two normal subgroup whose index is a power of two.

Then EQN-SAT(G) and EQN-ID(G) cannot be decided in time $2^{o(\log^2 N)}$ under ETH.

Let G be finite solvable group and assume that either

- FitLen(G) \geq 4, or
- FitLen(G) = 3 and there is no Fitting-length-two normal subgroup whose index is a power of two.

Then EQN-SAT(G) and EQN-ID(G) cannot be decided in time $2^{o(\log^2 N)}$ under ETH. In particular, EQN-SAT(G) and EQN-ID(G) are not in P under ETH.

Let G be finite solvable group and assume that either

- FitLen(G) \geq 4, or
- FitLen(G) = 3 and there is no Fitting-length-two normal subgroup whose index is a power of two.

Then EQN-SAT(G) and EQN-ID(G) cannot be decided in time $2^{o(\log^2 N)}$ under ETH. In particular, EQN-SAT(G) and EQN-ID(G) are not in P under ETH.

What about other groups of Fitting-length three?

Let G be finite solvable group and assume that either

- FitLen(G) \geq 4, or
- FitLen(G) = 3 and there is no Fitting-length-two normal subgroup whose index is a power of two.

Then EQN-SAT(G) and EQN-ID(G) cannot be decided in time $2^{o(\log^2 N)}$ under ETH. In particular, EQN-SAT(G) and EQN-ID(G) are not in P under ETH.

What about other groups of Fitting-length three?

Theorem (Idziak, Kawałek, Krzaczkowski, LICS 2020)

EQN-SAT(S_4) and EQN-ID(S_4) are not in P under ETH.

 $(S_4 = \text{symmetric group on 4 elements})$

Theorem (Idziak, Kawałek, Krzaczkowski, W.)

Let G be finite solvable group of Fitting length $d \ge 3$. Then EQN-SAT(G) and EQN-ID(G) cannot be decided in time $2^{o(\log^{d-1} N)}$ under ETH.

In particular, EQN-SAT(G) and EQN-ID(G) are not in P under ETH.

C-COLORING

A C-coloring for $C \in \mathbb{N}$ of a graph $\Gamma = (V, E)$ is a map $\chi : V \to [1 .. C]$. A coloring χ valid if $\chi(u) \neq \chi(v)$ whenever $\{u, v\} \in E$.

C-COLORING

A C-coloring for $C \in \mathbb{N}$ of a graph $\Gamma = (V, E)$ is a map $\chi : V \to [1 .. C]$. A coloring χ valid if $\chi(u) \neq \chi(v)$ whenever $\{u, v\} \in E$.

The *C*-COLORING problem:

Input: given an undirected graph $\Gamma = (V, E)$ **Question:** \exists a valid *C*-coloring of Γ ?

C-COLORING

A C-coloring for $C \in \mathbb{N}$ of a graph $\Gamma = (V, E)$ is a map $\chi : V \to [1 .. C]$. A coloring χ valid if $\chi(u) \neq \chi(v)$ whenever $\{u, v\} \in E$.

The *C*-COLORING problem:

Input: given an undirected graph $\Gamma = (V, E)$ **Question:** \exists a valid *C*-coloring of Γ ?

- NP-complete for $C \geq 3$
- 3-COLORING cannot be solved in time 2^{o(|V|+|E|)} unless ETH fails (see e.g. Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh, Thm. 14.6).
- ▶ \rightsquigarrow for every $C \ge 3$, C-COLORING cannot be solved in time $2^{o(|V|+|E|)}$ unless ETH fails.

$$\begin{aligned} \mathsf{\Gamma} &= (\mathsf{V}, \mathsf{E}) \text{ graph with } \mathsf{V} &= \{1, \dots, n\} \\ \mathsf{E} &= \{e_1, \dots, e_m\} \text{ where } e_k = \{i_k, j_k\} \end{aligned}$$

$$egin{aligned} \Gamma = (V, E) ext{ graph with } V = \set{1, \ldots, n} \ E = \set{e_1, \ldots, e_m} ext{ where } e_k = \{i_k, j_k\} \end{aligned}$$

For every vertex *i* introduce a variable X_i .

$$ar{u} = (V, E)$$
 graph with $V = \{1, \dots, n\}$
 $E = \{e_1, \dots, e_m\}$ where $e_k = \{i_k, j_k\}$

For every vertex *i* introduce a variable X_i .

► For every edge
$$e_k = \{i_k, j_k\}$$
 set $\alpha_k = X_{i_k} X_{j_k}^{-1}$.

$$ar{u} = (V, E)$$
 graph with $V = \{1, \dots, n\}$
 $E = \{e_1, \dots, e_m\}$ where $e_k = \{i_k, j_k\}$

For every vertex *i* introduce a variable X_i .

• For every edge
$$e_k = \{i_k, j_k\}$$
 set $\alpha_k = X_{i_k} X_{j_k}^{-1}$.

• Set $\beta = [d, \alpha_1, \dots, \alpha_m] = [\cdots [[d, \alpha_1], \alpha_2], \dots, \alpha_m]$ (recall d = (123)).

$$ar{u} = (V, E)$$
 graph with $V = \{1, \dots, n\}$
 $E = \{e_1, \dots, e_m\}$ where $e_k = \{i_k, j_k\}$

Claim

 $\beta = d$ is satisfiable $\iff \Gamma$ is 2-colorable.

$$ar{u} = (V, E)$$
 graph with $V = \{1, \dots, n\}$
 $E = \{e_1, \dots, e_m\}$ where $e_k = \{i_k, j_k\}$

 $\beta = d$ is satisfiable $\iff \Gamma$ is 2-colorable.

Proof.

Recall: $C_3 \triangleleft S_3$ and $S_3/C_3 = C_2$. Let $\sigma : \{X_1, \ldots, X_n\} \rightarrow G$.

$$ar{u} = (V, E)$$
 graph with $V = \{1, \dots, n\}$
 $E = \{e_1, \dots, e_m\}$ where $e_k = \{i_k, j_k\}$

Claim

 $\beta = d$ is satisfiable $\iff \Gamma$ is 2-colorable.

Proof.

Recall: $C_3 \triangleleft S_3$ and $S_3/C_3 = C_2$. Let $\sigma : \{X_1, \ldots, X_n\} \rightarrow G$. Define a coloring $\chi_{\sigma} : V \rightarrow \{1, 2\}$ by $\chi_{\sigma}(i) = 1 \iff \sigma(X_i) \in C_3$.

$$ar{u} = (V, E)$$
 graph with $V = \{1, \dots, n\}$
 $E = \{e_1, \dots, e_m\}$ where $e_k = \{i_k, j_k\}$

Claim

 $\beta = d$ is satisfiable $\iff \Gamma$ is 2-colorable.

Proof.

Recall:
$$C_3 \triangleleft S_3$$
 and $S_3/C_3 = C_2$. Let $\sigma : \{X_1, \ldots, X_n\} \rightarrow G$.
Define a coloring $\chi_{\sigma} : V \rightarrow \{1, 2\}$ by $\chi_{\sigma}(i) = 1 \iff \sigma(X_i) \in C_3$

$$\sigma([d, \alpha_1]) = \begin{cases} 1 & \text{if } \sigma(\alpha_1) \in C_3 \\ d & \text{if } \sigma(\alpha_1) \notin C_3 \end{cases}$$

$$ar{u} = (V, E)$$
 graph with $V = \{1, \dots, n\}$
 $E = \{e_1, \dots, e_m\}$ where $e_k = \{i_k, j_k\}$

Claim

 $\beta = d$ is satisfiable $\iff \Gamma$ is 2-colorable.

Proof.

Recall: $C_3 \triangleleft S_3$ and $S_3/C_3 = C_2$. Let $\sigma : \{X_1, \ldots, X_n\} \rightarrow G$. Define a coloring $\chi_{\sigma} : V \rightarrow \{1, 2\}$ by $\chi_{\sigma}(i) = 1 \iff \sigma(X_i) \in C_3$.

$$\sigma([\mathbf{d},\alpha_1]) = \begin{cases} 1 & \text{if } \sigma(\alpha_1) \in \mathbf{C}_3 \\ \mathbf{d} & \text{if } \sigma(\alpha_1) \notin \mathbf{C}_3 \iff \chi_{\sigma}(i_1) \neq \chi_{\sigma}(j_1) \end{cases}$$

$$egin{aligned} & \mathsf{\Gamma} = (V,E) ext{ graph with } V = \set{1,\ldots,n} \ & E = \set{e_1,\ldots,e_m} ext{ where } e_k = \{i_k,j_k\} \end{aligned}$$

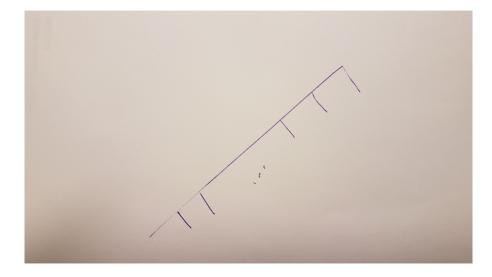
Length: $|\beta| \approx 2^m$.

$$\begin{bmatrix} d, \alpha_1 \end{bmatrix} = d^{-1} \alpha_1^{-1} d\alpha_1$$

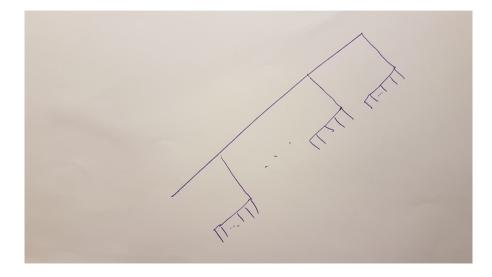
$$\begin{bmatrix} d, \alpha_1, \alpha_2 \end{bmatrix} = \alpha_1^{-1} d^{-1} \alpha_1 d\alpha_2^{-1} d^{-1} \alpha_1^{-1} d\alpha_1 \alpha_2$$

$$\begin{bmatrix} d, \alpha_1, \alpha_2, \alpha_3 \end{bmatrix} = \alpha_2^{-1} \alpha_1^{-1} d^{-1} \alpha_1 d\alpha_2 d^{-1} \alpha_1^{-1} d\alpha_1 \alpha_3^{-1} \alpha_1^{-1} d^{-1} \alpha_1 d\alpha_2^{-1} d^{-1} \alpha_1^{-1} d\alpha_1 \alpha_2 \alpha_3$$

Reduce the size of the equation



Reduce the size of the equation



Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$ $\Gamma = (V, E)$ graph with $V = \{1, ..., n\}, E = \{e_1, ..., e_m\}.$

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

 $\Gamma = (V, E)$ graph with $V = \{1, \ldots, n\}$, $E = \{e_1, \ldots, e_m\}$.

For every vertex *i* introduce a variable X_i .

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, \dots, n\}$, $E = \{e_1, \dots, e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, \dots, n\}$, $E = \{e_1, \dots, e_m\}$.
 - For every vertex *i* introduce a variable X_i .
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, \dots, n\}$, $E = \{e_1, \dots, e_m\}$.
 - For every vertex *i* introduce a variable X_i .
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .
 - Set $\gamma = [(d, 1, 1), \beta_1, \dots, \beta_{\mu}].$

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, \dots, n\}$, $E = \{e_1, \dots, e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .
 - Set $\gamma = [(d, 1, 1), \beta_1, ..., \beta_{\mu}].$

Claim

 $\gamma = (d, 1, 1)$ is satisfiable $\iff \Gamma$ is 3-colorable.

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, \dots, n\}$, $E = \{e_1, \dots, e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .
 - Set $\gamma = [(d, 1, 1), \beta_1, \dots, \beta_{\mu}].$

Key Observation

 $|\beta_k| \approx 2^{\mu} \rightsquigarrow |\gamma| \approx 2^{\mu} \cdot 2^{\mu} \approx 2^{2\sqrt{m}}$

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, \dots, n\}$, $E = \{e_1, \dots, e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .
 - Set $\gamma = [(d, 1, 1), \beta_1, \dots, \beta_{\mu}].$

Key Observation

 $|\beta_k| \approx 2^{\mu} \rightsquigarrow |\gamma| \approx 2^{\mu} \cdot 2^{\mu} \approx 2^{2\sqrt{m}}$

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, \dots, n\}$, $E = \{e_1, \dots, e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .
 - Set $\gamma = [(d, 1, 1), \beta_1, \dots, \beta_\mu].$

Key Observation

 $|\beta_k| \approx 2^{\mu} \rightsquigarrow |\gamma| \approx 2^{\mu} \cdot 2^{\mu} \approx 2^{2\sqrt{m}}$

Assume EQN-SAT(G^*) decidable in time $2^{o(\log^2 N)}$ (N = equation length).

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, \dots, n\}$, $E = \{e_1, \dots, e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .
 - Set $\gamma = [(d, 1, 1), \beta_1, \dots, \beta_\mu].$

Key Observation

 $|\beta_k| \approx 2^{\mu} \rightsquigarrow |\gamma| \approx 2^{\mu} \cdot 2^{\mu} \approx 2^{2\sqrt{m}}$

Assume EQN-SAT(G^*) decidable in time $2^{o(\log^2 N)}$ (N = equation length). Then we can solve 3-COLORING in time $2^{o(n+m)}$: with $N = 2^{2\sqrt{m}}$ we have $2^{o(\log^2 2^{2\sqrt{m}})} = 2^{o(\sqrt{m}^2)} = 2^{o(m)}$

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, \dots, n\}$, $E = \{e_1, \dots, e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .
 - Set $\gamma = [(d, 1, 1), \beta_1, \dots, \beta_\mu].$

Key Observation

 $|\beta_k| \approx 2^{\mu} \rightsquigarrow |\gamma| \approx 2^{\mu} \cdot 2^{\mu} \approx 2^{2\sqrt{m}}$

Assume EQN-SAT(G^*) decidable in time $2^{o(\log^2 N)}$ (N = equation length). Then we can solve 3-COLORING in time $2^{o(n+m)}$: with $N = 2^{2\sqrt{m}}$ we have $2^{o(\log^2 2^{2\sqrt{m}})} = 2^{o(\sqrt{m}^2)} = 2^{o(m)}$ contradicting ETH.

- Find a "nice" normal subgroup $H \leq G$.
 - ▶ If $|G/H| = C \ge 3$, reduce *C*-COLORING:
 - group edges into $\sqrt[d-1]{m}$ groups, each group again into $\sqrt[d-1]{m}$ groups,...
 - need to take some care to which values our expressions can evaluate.

- Find a "nice" normal subgroup $H \leq G$.
 - ▶ If $|G/H| = C \ge 3$, reduce *C*-COLORING:
 - group edges into $\sqrt[d-1]{m}$ groups, each group again into $\sqrt[d-1]{m}$ groups,...
 - need to take some care to which values our expressions can evaluate.
 - If |G/H| = 2, reduce 3SAT:

Find a "nice" normal subgroup $H \leq G$.

- ▶ If $|G/H| = C \ge 3$, reduce *C*-COLORING:
 - group edges into $\sqrt[d-1]{m}$ groups, each group again into $\sqrt[d-1]{m}$ groups,...
 - need to take some care to which values our expressions can evaluate.
- If |G/H| = 2, reduce 3SAT:
 - ▶ 1 means false, $g \in G \setminus H$ means true $X[X, Y_1, Y_2, Y_3]^{-1}$ simulates $(X, Y_1, Y_2, Y_3) \mapsto X \land (\neg Y_1 \lor \neg Y_2 \lor \neg Y_3)$

Find a "nice" normal subgroup $H \leq G$.

▶ If $|G/H| = C \ge 3$, reduce *C*-COLORING:

- group edges into $\sqrt[d-1]{m}$ groups, each group again into $\sqrt[d-1]{m}$ groups,...
- need to take some care to which values our expressions can evaluate.

• If
$$|G/H| = 2$$
, reduce 3SAT:

▶ 1 means false, $g \in G \setminus H$ means true $X[X, Y_1, Y_2, Y_3]^{-1}$ simulates $(X, Y_1, Y_2, Y_3) \mapsto X \land (\neg Y_1 \lor \neg Y_2 \lor \neg Y_3)$ if [X, g, g, g] = X.

G-programs

PROGRAMSAT(G)

Constant: The group *G* **Input:** a *G*-program $P \in (\mathcal{X} \times G \times G)^*$ **Question:** \exists an assignment $\sigma : \mathcal{X} \to \{0, 1\}$ s.t. $\sigma(P) = 1$?

Observation

```
\operatorname{EQN-SAT}(G) \leq_m^{\mathsf{P}} \operatorname{ProgramSAT}(G)
```

 \rightsquigarrow all lower bounds also apply to $\operatorname{ProgramSAT}({\mathcal G})$

G-programs

PROGRAMSAT(G)

Constant: The group *G* **Input:** a *G*-program $P \in (\mathcal{X} \times G \times G)^*$ **Question:** \exists an assignment $\sigma : \mathcal{X} \to \{0, 1\}$ s.t. $\sigma(P) = 1$?

Observation

 $\operatorname{EQN-SAT}(G) \leq_m^{\mathsf{P}} \operatorname{ProgramSAT}(G)$

 \rightsquigarrow all lower bounds also apply to $\operatorname{ProgramSAT}({\mathcal G})$

Theorem (Barrington, McKenzie, Moore, Tesson, Thérien, 2000)

If the n-input AND function can be computed via G-programs of polynomial length, then $\operatorname{PROGRAMSAT}(G \wr C_k)$ is NP-complete (for $k \ge 4$).

Does a similar result hold for $\operatorname{EQN-SAT}$ or $\operatorname{EQN-ID?}$

Two expressions as input.

Theorem (Barrington, McKenzie, Moore, Tesson, Thérien, 2000)

There is a 4-element monoid M such that EQN-SAT(M) is NP-complete.

Two expressions as input.

Theorem (Barrington, McKenzie, Moore, Tesson, Thérien, 2000)

There is a 4-element monoid M such that EQN-SAT(M) is NP-complete.

Corollary

If a semi-group S has a group divisor of Fitting length at least 3, then EQN-SAT(S) is not in P under ETH.

Two expressions as input.

Theorem (Barrington, McKenzie, Moore, Tesson, Thérien, 2000)

There is a 4-element monoid M such that EQN-SAT(M) is NP-complete.

Corollary

If a semi-group S has a group divisor of Fitting length at least 3, then EQN-SAT(S) is not in P under ETH.

What about EQN-ID?

Conclusion / Open Problems

- Quasipolynomial lower bound for EQN-SAT(G) and EQN-ID(G) under ETH if G if of Fitting length 3.
- Matching upper bounds?

Conclusion / Open Problems

- Quasipolynomial lower bound for EQN-SAT(G) and EQN-ID(G) under ETH if G if of Fitting length 3.
- Matching upper bounds?
- What about groups of Fitting length two?
 - EQN-SAT in P for *p*-groups by abelian groups.
 - EQN-ID in P for nilpotent-by-abelian groups.
 - EQN-SAT (D_{15}) and similar groups not in P under ETH (Idziak, Kawałek, Krzaczkowski).
 - Their proof also works for showing that $PROGRAMSAT(S_3 \times A_4)$ (and similar groups) is not in P under ETH.
 - Smallest unknown example: $(C_2 \times C_2 \times C_3) \rtimes C_2$.
- Complexity of versions without constants?
- What if the group is part of the input?

Conclusion / Open Problems

- Quasipolynomial lower bound for EQN-SAT(G) and EQN-ID(G) under ETH if G if of Fitting length 3.
- Matching upper bounds?
- What about groups of Fitting length two?
 - EQN-SAT in P for *p*-groups by abelian groups.
 - EQN-ID in P for nilpotent-by-abelian groups.
 - EQN-SAT (D_{15}) and similar groups not in P under ETH (Idziak, Kawałek, Krzaczkowski).
 - Their proof also works for showing that $PROGRAMSAT(S_3 \times A_4)$ (and similar groups) is not in P under ETH.
 - Smallest unknown example: $(C_2 \times C_2 \times C_3) \rtimes C_2$.
- Complexity of versions without constants?
- What if the group is part of the input?

Thank you!