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Equations in groups

Equations in (Z,+):

X + X = 1

X + Y = Y + X

X + X + X = 1 + Y + Y

Equations over an arbitrary group G :

aXY−1 = bXaY

W. l. o. g. of the form
α = 1

for an expression α ∈ (G ∪ X ∪ X−1)∗ (with variables X ).
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Equations in groups

The EQN-SAT(G ) problem:

Constant: The group G
Input: an expression α ∈ (G ∪ X ∪ X−1)∗

Question: ∃ an assignment σ : X → G s.t. σ(α) = 1?

The EQN-ID(G ) problem:

Constant: The group G
Input: an expression α ∈ (G ∪ X ∪ X−1)∗

Question: is σ(α) = 1 ∀ assignments σ : X → G?

In many infinite groups these problems are undecidable!
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Complexity of equations in groups

In finite groups EQN-SAT(G ) is in NP:

I Input: α ∈ (G ∪ X ∪ X−1)∗,

I for each variable X ∈ X that appears in α, guess σ(X ) ∈ G ,

I evaluate σ(α).

and EQN-ID(G ) is in coNP.

Finer classification with respect to complexity?

Observation

EQN-ID(G ) ≤P
T EQN-SAT(G )

I Input: α ∈ (G ∪ X ∪ X−1)∗,

I for each g ∈ G \ 1 check whether αg−1 is satisfiable,

I if yes, then α is not an identity.
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Overview: complexity of equations in finite groups

Theorem (Goldmann, Russell, 2002)

I If G is nilpotent, then EQN-SAT(G ) ∈ P.

I If G is non-solvable, then EQN-SAT(G ) is NP-complete.

EQN-SAT(G ) EQN-ID(G )

nilpotent

in P (actually ACC0) in P (actually ACC0)

solvable,
non-nilpotent

in NP in coNP

??? ???

non-solvable NP-complete coNP-complete
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Overview: complexity of equations in finite groups

Theorem (Horváth, Lawrence, Mérai, Szabó, 2007)

If G is non-solvable, then EQN-ID(G ) is coNP-complete.
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Overview: complexity of equations in finite groups

Theorem (Földvári, Horváth 2020)

I EQN-SAT(Q o A) ∈ P for Q a p-group, A abelian.

I EQN-ID(N o A) ∈ P for N nilpotent, A abelian.

EQN-SAT(G ) EQN-ID(G )

nilpotent in P (actually ACC0) in P (actually ACC0)

solvable,
non-nilpotent

in NP in coNP

p-group o abelian in P

??? ???

non-solvable NP-complete coNP-complete
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The role of commutators

For showing NP-completeness: reduce 3SAT to EQN-SAT(G )

 need to encode conjunctions/disjunctions

Usually: encode false by 1 and true by 6= 1 ∈ G .

Consider the following problem:

I There are two nails in the wall.

I You have a rope and a picture hanging
on the rope.

I You want to wrap the rope around the
nails such that, if you remove one of the
nails, the picture falls down.

Commutators: [x , y ] = x−1y−1xy =

{
?? if x 6= 1 and y 6= 1

1 otherwise.
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Examples: S3 and G ∗

2

3 1

sd

S3 = group of permutations over three elements

= symmetry group of a regular triangle

=
{

1, (1 2)︸︷︷︸
s

, (1 3), (2 3), (1 2 3)︸ ︷︷ ︸
d

, (1 3 2)
}

= C3 o C2

= F ({ s, d })
/{

s2 = d3 = 1, ds = sd2
}

 [d , s] = d−1s−1ds = d−1d−1 = d
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Examples: S3 and G ∗

22

32 12

s2d2

23

33 13

s3d3

21

31 11

s1d1

a
G ∗ = G648,705 = (S3 × S3 × S3) o C3

with a(x , y , z) = (z , x , y)a
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The Fitting length

Commutators: [x , y ] = x−1y−1xy and [x1, . . . , xk ] =
[
[x1, . . . , xk−1], xk

]

G is nilpotent of class c if ∀ x1, . . . , xc+1 ∈ G : [x1, . . . , xc+1] = 1.

The Fitting length FitLen(G ) (nilpotent length) of G is the smallest k such
that there are normal subgroups

1 = N0 C N1 C · · · C Nk = G

with Ni/Ni−1 nilpotent for all i = 1, . . . , k .

Example

FitLen(S3) = 2: 1 C C3 C S3 with S3/C3 = C2

FitLen(G ∗) = 3: 1 C (C3 × C3 × C3) C (S3 × S3 × S3) C G ∗

I (S3 × S3 × S3)/(C3 × C3 × C3) = (C2 × C2 × C2)

I G ∗/(S3 × S3 × S3) = C3
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The Fitting length FitLen(G ) (nilpotent length) of G is the smallest k such
that there are normal subgroups

1 = N0 C N1 C · · · C Nk = G

with Ni/Ni−1 nilpotent for all i = 1, . . . , k .

Example

FitLen(S3) = 2: 1 C C3 C S3 with S3/C3 = C2

FitLen(G ∗) = 3: 1 C (C3 × C3 × C3) C (S3 × S3 × S3) C G ∗

I (S3 × S3 × S3)/(C3 × C3 × C3) = (C2 × C2 × C2)

I G ∗/(S3 × S3 × S3) = C3
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Exponential time hypothesis

Exponential time hypothesis (ETH)

∃δ > 0 s.t. every algorithm for 3SAT needs time Ω(2δn)
(n = number of variables).

Sparsification Lemma (Impagliazzo, Paturi, Zane, 2001)

ETH =⇒ ∃ε > 0 s.t. every algorithm for 3SAT needs time Ω(2ε(m+n))
(m = number of clauses).

 no 2o(n+m)-time algorithm for 3SAT under ETH.
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Main result

Theorem

Let G be finite solvable group and assume that either

I FitLen(G ) ≥ 4, or

I FitLen(G ) = 3 and there is no Fitting-length-two normal subgroup
whose index is a power of two.

Then EQN-SAT(G ) and EQN-ID(G ) cannot be decided in time 2o(log2 N)

under ETH.

In particular, EQN-SAT(G ) and EQN-ID(G ) are not in P under ETH.

What about other groups of Fitting-length three?

Theorem (Idziak, Kawa lek, Krzaczkowski, LICS 2020 )

EQN-SAT(S4) and EQN-ID(S4) are not in P under ETH.

(S4 = symmetric group on 4 elements)
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C -Coloring

A C -coloring for C ∈ N of a graph Γ = (V ,E ) is a map χ : V → [1 ..C ].
A coloring χ valid if χ(u) 6= χ(v) whenever { u, v } ∈ E .

The C -Coloring problem:

Input: given an undirected graph Γ = (V ,E )
Question: ∃ a valid C -coloring of Γ?

I NP-complete for C ≥ 3

I 3-Coloring cannot be solved in time 2o(|V |+|E |) unless ETH fails

(see e. g. Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk,
Pilipczuk, Saurabh, Thm. 14.6).

I  for every C ≥ 3, C -Coloring cannot be solved in time 2o(|V |+|E |)

unless ETH fails.
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Reduce 2-Coloring to EQN-SAT(S3)

Γ = (V ,E ) graph with V = { 1, . . . , n }
E = { e1, . . . , em } where ek = {ik , jk}

I For every vertex i introduce a variable Xi .
I For every edge ek = {ik , jk} set αk = XikX

−1
jk

.

I Set β = [d , α1, . . . , αm] =
[
· · ·
[
[d , α1], α2

]
, . . . , αm

]
(recall d = (1 2 3)).
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E = { e1, . . . , em } where ek = {ik , jk}

I For every vertex i introduce a variable Xi .
I For every edge ek = {ik , jk} set αk = XikX

−1
jk

.

I Set β = [d , α1, . . . , αm] =
[
· · ·
[
[d , α1], α2

]
, . . . , αm

]
(recall d = (1 2 3)).

Claim

β = d is satisfiable ⇐⇒ Γ is 2-colorable.

Proof.

Recall: C3 C S3 and S3/C3 = C2. Let σ : {X1, . . . ,Xn} → G .

Define a coloring χσ : V → {1, 2} by χσ(i) = 1 ⇐⇒ σ(Xi ) ∈ C3.

σ([d , α1]) =

{
1 if σ(α1) ∈ C3

d if σ(α1) 6∈ C3

⇐⇒ χσ(i1) 6= χσ(j1)
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· · ·
[
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Length: |β| ≈ 2m.

[d , α1] = d−1α1
−1dα1

[d , α1, α2] = α1
−1d−1α1dα

−1
2 d−1α1

−1dα1α2

[d , α1, α2, α3] = α−1
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−1dα1 α3
−1 α1

−1d−1α1dα
−1
2 d−1α1

−1dα1α2 α3
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Reduce 3-Coloring to EQN-SAT(G ∗)

Recall: G ∗ = (S3 × S3 × S3) o C3

Γ = (V ,E ) graph with V = { 1, . . . , n }, E = { e1, . . . , em }.
I For every vertex i introduce a variable Xi .

I Group the edges in µ ≈
√
m groups of µ edges each.

I For every edge ek,` = {ik,`, jk,`} set αk,` = Xik,`X
−1
jk,`

.

I Set βk = Y−1
k [ (s, 1, 1), αk,1, . . . , αk,µ]Yk for a new variable Yk .

I Set γ = [ (d , 1, 1), β1, . . . , βµ].

Assume EQN-SAT(G ∗) decidable in time 2o(log2 N) (N = equation length).

Then we can solve 3-Coloring in time 2o(n+m):

with N = 22
√
m we have 2o(log2 22

√
m) = 2o(

√
m

2
) = 2o(m) contradicting ETH.
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I Quasipolynomial lower bound for EQN-SAT(G ) and EQN-ID(G )
under ETH if G if of Fitting length 3 and complicated enough.

I Generalization to all groups of Fitting length 3 under preparation (in
collaboration with Idziak, Kawa lek, Krzaczkowski).

I What about groups of Fitting length two?

I Conjecture: if G is finite solvable, then EQN-SAT(G ) and
EQN-ID(G ) are decidable in quasipolynomial time.

Thank you!
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