Hardness of equations

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Conclusion

Hardness of equations over finite solvable groups under the exponential time hypothesis

Armin Weiß

Universität Stuttgart, FMI

ICALP 2020

X + X = 1

Overview

Groups and commutators

Main Result

Proof

X + X = 1X + Y = Y + X

Overview

Groups and

Main Result

Proof

$$X + X = 1$$
$$X + Y = Y + X$$
$$X + X + X = 1 + Y + Y$$

Armin Weiß

Overview

Groups and

Main Result

Proof

$$X + X = 1$$
$$X + Y = Y + X$$
$$X + X + X = 1 + Y + Y$$

Equations over an arbitrary group G:

$$aXY^{-1} = bXaY$$

Armin Weiß

Overview

Groups and

Main Result

Proof

$$X + X = 1$$
$$X + Y = Y + X$$
$$X + X + X = 1 + Y + Y$$

Equations over an arbitrary group G:

$$aXY^{-1} = bXaY$$

 $W.\,I.\,o.\,g.$ of the form

 $\alpha = 1$

for an expression $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$ (with variables \mathcal{X}).

Armin Weiß

Overview

Groups and

Main Result

Proof

The EQN-SAT(G) problem:

Constant:	The group <i>G</i>
Input:	an expression $lpha \in ({ extsf{G}} \cup { extsf{X}} \cup { extsf{X}}^{-1})^*$
Question:	\exists an assignment $\sigma: \mathcal{X} ightarrow G$ s.t. $\sigma(lpha) = 1$?

Armin we

Overview

Groups and

Main Result

Proof

The EQN-SAT(G) problem:

Constant:	The group <i>G</i>
Input:	an expression $lpha \in ({\sf G} \cup {\cal X} \cup {\cal X}^{-1})^*$
Question:	\exists an assignment $\sigma: \mathcal{X} \to G$ s.t. $\sigma(\alpha) = 1$?

The EQN-ID(G) problem:

Armin Weiß

Overview

Froups and

Main Result

Proof

The EQN-SAT(G) problem:

Constant:	The group <i>G</i>
Input:	an expression $lpha \in ({\sf G} \cup {\cal X} \cup {\cal X}^{-1})^*$
Question:	\exists an assignment $\sigma : \mathcal{X} \to G$ s.t. $\sigma(\alpha) = 1$?

The EQN-ID(G) problem:

In many infinite groups these problems are undecidable!

Armin Weiß

Overview

roups and

Main Result

Proof

In finite groups EQN-SAT(G) is in NP:

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each variable $X \in \mathcal{X}$ that appears in α , guess $\sigma(X) \in G$,

• evaluate $\sigma(\alpha)$.

Armin Weiß

Overview

Groups and

Main Result

Proof

In finite groups EQN-SAT(G) is in NP:

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each variable $X \in \mathcal{X}$ that appears in α , guess $\sigma(X) \in G$,

• evaluate $\sigma(\alpha)$.

and EQN-ID(G) is in coNP.

Overview

Groups and

Main Result

Proof

In finite groups EQN-SAT(G) is in NP:

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each variable $X \in \mathcal{X}$ that appears in α , guess $\sigma(X) \in G$,

• evaluate $\sigma(\alpha)$.

and EQN-ID(G) is in coNP.

Finer classification with respect to complexity?

Armin Weiß

Overview

Groups and

Main Result

Proof

In finite groups EQN-SAT(G) is in NP:

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each variable $X \in \mathcal{X}$ that appears in α , guess $\sigma(X) \in G$,

• evaluate $\sigma(\alpha)$.

and EQN-ID(G) is in coNP.

Finer classification with respect to complexity?

Observation [Variable]

 $\operatorname{EQN-ID}(G) \leq^{\mathsf{P}}_{\mathcal{T}} \operatorname{EQN-SAT}(G)$

Armin Weiß

Overview

Groups and

Main Result

Proof

In finite groups EQN-SAT(G) is in NP:

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each variable $X \in \mathcal{X}$ that appears in α , guess $\sigma(X) \in G$,

• evaluate $\sigma(\alpha)$.

and EQN-ID(G) is in coNP.

Finer classification with respect to complexity?

Observation

 $\operatorname{EQN-ID}(G) \leq^{\mathsf{P}}_{T} \operatorname{EQN-SAT}(G)$

▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,

Armin Weiß

Overview

Groups and

Main Result

Proof

In finite groups EQN-SAT(G) is in NP:

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each variable $X \in \mathcal{X}$ that appears in α , guess $\sigma(X) \in G$,
- evaluate $\sigma(\alpha)$.

and EQN-ID(G) is in coNP.

Finer classification with respect to complexity?

Observation

$\operatorname{EQN-ID}(G) \leq^{\mathsf{P}}_{\mathcal{T}} \operatorname{EQN-SAT}(G)$

▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,

▶ for each $g \in G \setminus 1$ check whether αg^{-1} is satisfiable,

Armin Weiß

Overview

Groups and

Main Result

Proof

In finite groups EQN-SAT(G) is in NP:

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each variable $X \in \mathcal{X}$ that appears in α , guess $\sigma(X) \in G$,
- evaluate $\sigma(\alpha)$.

and EQN-ID(G) is in coNP.

Finer classification with respect to complexity?

Observation

$\operatorname{EQN-ID}(G) \leq^{\mathsf{P}}_{\mathcal{T}} \operatorname{EQN-SAT}(G)$

- ▶ Input: $\alpha \in (\mathcal{G} \cup \mathcal{X} \cup \mathcal{X}^{-1})^*$,
- ▶ for each $g \in G \setminus 1$ check whether αg^{-1} is satisfiable,
- \blacktriangleright if yes, then α is not an identity.

Armin Weiß

Overview

Groups and

Main Result

Proof

Armin Weiß Overview Theorem (Goldmann, Russell, 2002) ▶ If G is nilpotent, then $EQN-SAT(G) \in P$. EQN-SAT(G) EQN-ID(G) in P (actually ACC^{0}) in P (actually ACC^{0}) nilpotent

Armin Weiß Overview Theorem (Goldmann, Russell, 2002) ▶ If G is nilpotent, then $EQN-SAT(G) \in P$. ▶ If G is non-solvable, then EQN-SAT(G) is NP-complete. EQN-SAT(G) EQN-ID(G) in P (actually ACC^{0}) in P (actually ACC^{0}) nilpotent non-solvable NP-complete

				Armin Weiß
Theorem (Horváth, Lawrence, Mérai, Szabó, 2007)				Overview Groups and
If G is non-solvable, then $EQN-ID(G)$ is $coNP$ -complete.				commutators
				Main Result
				Proof
				Conclusion
	EQN-SAT(G)	EQN-ID(G)		
nilpotent	in P (actually ACC ⁰)	in P (actually ACC ⁰)		
			_	
non-solvable	NP-complete	coNP-complete	_	

			Armin Weiß
Theorem (Horváth, Lawrence, Mérai, Szabó, 2007)			Overview
If G is non-solvable, then $EQN-ID(G)$ is $coNP$ -complete.			Groups and commutators
			Main Result
			Proof
	1		Conclusion
	EQN-SAT(G)	EQN-ID(G)	
nilpotent	in P (actually ACC ⁰)	in P (actually ACC ⁰)	
	in NP	in coNP	
solvable,			
non-nilpotent			
non-solvable	NP-complete	coNP-complete	

Armin Weiß Overview Theorem (Földvári, Horváth 2020) ▶ EQN-SAT($Q \rtimes A$) \in P for Q a p-group, A abelian. EQN-SAT(G) EQN-ID(G) in P (actually ACC^{0}) in P (actually ACC^{0}) nilpotent in NP in coNP solvable. p-group \rtimes abelian in P non-nilpotent non-solvable NP-complete coNP-complete

Theorem (Földvári, Horváth 2020)

- ▶ EQN-SAT($Q \rtimes A$) ∈ P for Q a p-group, A abelian.
- ▶ EQN-ID($N \rtimes A$) ∈ P for N nilpotent, A abelian.

	EQN-SAT(G)	EQN-ID(G)
nilpotent	in P (actually ACC ⁰)	in P (actually ACC ⁰)
solvable, non-nilpotent	in NP <i>p-group</i> ⋊ <i>abelian</i> in P	in coNP <i>nilpotent</i> ⋊ <i>abelian</i> in P
non-solvable	NP-complete	coNP-complete

Armin Weiß

Overview

Groups and

Main Result

Proof

Conclusior

Theorem (Földvári, Horváth 2020)

- ▶ EQN-SAT($Q \rtimes A$) ∈ P for Q a p-group, A abelian.
- ▶ EQN-ID($N \rtimes A$) ∈ P for N nilpotent, A abelian.

	EQN-SAT(G)	EQN-ID(G)
nilpotent	in P (actually ACC ⁰)	in P (actually ACC ⁰)
	in NP	in coNP
solvable, non-nilpotent	<i>p-group</i> \rtimes <i>abelian</i> in P	<i>nilpotent</i> ⋊ <i>abelian</i> in P
	???	???
non-solvable	NP-complete	coNP-complete

Armin Weiß

Overview

Groups and

Main Result

Proof

Conclusior

For showing NP-completeness: reduce 3SAT to EQN-SAT(G) \rightarrow need to encode conjunctions/disjunctions

Overview

Groups and commutators

Main Result

Proof

For showing NP-completeness: reduce 3SAT to EQN-SAT(G) \rightarrow need to encode conjunctions/disjunctions

Usually: encode false by 1 and true by $\neq 1 \in G$.

Overview

Groups and commutators

Main Result

Proof

For showing NP-completeness: reduce 3SAT to EQN-SAT(G) \rightarrow need to encode conjunctions/disjunctions

Usually: encode false by 1 and true by $\neq 1 \in G$.

Consider the following problem:

There are two nails in the wall.

Armin Weiß

Groups and commutators

For showing NP-completeness: reduce 3SAT to EQN-SAT(G) \rightarrow need to encode conjunctions/disjunctions

Usually: encode false by 1 and true by $\neq 1 \in G$.

Consider the following problem:

- There are two nails in the wall.
- You have a rope and a picture hanging on the rope.

Armin Weiß

Groups and commutators

For showing NP-completeness: reduce 3SAT to EQN-SAT(G) \rightarrow need to encode conjunctions/disjunctions

Usually: encode false by 1 and true by $\neq 1 \in G$.

Consider the following problem:

- There are two nails in the wall.
- You have a rope and a picture hanging on the rope.
- You want to wrap the rope around the nails such that, if you remove one of the nails, the picture falls down.

Armin Weiß

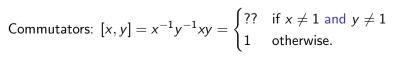
Groups and commutators

For showing NP-completeness: reduce 3SAT to EQN-SAT(G) \rightsquigarrow need to encode conjunctions/disjunctions

Usually: encode false by 1 and true by $\neq 1 \in G$.

Consider the following problem:

- There are two nails in the wall.
- You have a rope and a picture hanging on the rope.
- You want to wrap the rope around the nails such that, if you remove one of the nails, the picture falls down.



Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Overview

d 3 1

 $S_{3} = \text{group of permutations over three elements} \\ = \text{symmetry group of a regular triangle} \\ = \left\{1, \underbrace{(12)}_{s}, (13), (23), \underbrace{(123)}_{d}, (132)\right\}$

Groups and commutators

Main Result

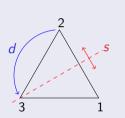
Proof

Conclusior

Armin Weiß

Overview Groups and

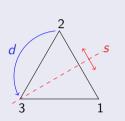
commutators



 $S_{3} = \text{group of permutations over three elements}$ = symmetry group of a regular triangle = $\{1, (12), (13), (23), (123), (132)\}$ = $C_{3} \rtimes C_{2}$

Overview Groups and

commutators



 $S_{3} = \text{group of permutations over three elements}$ = symmetry group of a regular triangle = $\{1, (\underline{12}), (13), (23), (\underline{123}), (132)\}$ = $C_{3} \rtimes C_{2}$ = $F(\{s, d\}) / \{s^{2} = d^{3} = 1, ds = sd^{2}\}$

Armin Weiß

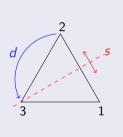
Overview

Groups and commutators

Main Result

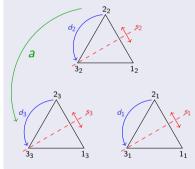
Proof

Conclusion



 $S_{3} = \text{group of permutations over three elements}$ = symmetry group of a regular triangle = $\{1, (12), (13), (23), (123), (132)\}$ = $C_{3} \rtimes C_{2}$ = $F(\{s, d\}) / \{s^{2} = d^{3} = 1, ds = sd^{2}\}$

$$\rightsquigarrow$$
 $[d,s] = d^{-1}s^{-1}ds = d^{-1}d^{-1} = d$



$$G^* = G_{648,705} = (S_3 \times S_3 \times S_3) \rtimes C_3$$

with $a(x, y, z) = (z, x, y)a$

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

The Fitting length

Commutators:
$$[x, y] = x^{-1}y^{-1}xy$$
 and $[x_1, \dots, x_k] = [[x_1, \dots, x_{k-1}], x_k]$

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Commutators:
$$[x, y] = x^{-1}y^{-1}xy$$
 and $[x_1, ..., x_k] = [[x_1, ..., x_{k-1}], x_k]$

G is nilpotent of class c if $\forall x_1, \ldots, x_{c+1} \in G : [x_1, \ldots, x_{c+1}] = 1$.

Overview

Groups and commutators

Main Result

Proof

Commutators:
$$[x,y]=x^{-1}y^{-1}xy$$
 and $[x_1,\ldots,x_k]=ig[[x_1,\ldots,x_{k-1}],x_kig]$

G is nilpotent of class c if $\forall x_1, \ldots, x_{c+1} \in G : [x_1, \ldots, x_{c+1}] = 1$.

The Fitting length FitLen(G) (nilpotent length) of G is the smallest k such that there are normal subgroups

$$\mathsf{L} = \mathsf{N}_0 \lhd \mathsf{N}_1 \lhd \cdots \lhd \mathsf{N}_k = \mathsf{G}$$

with N_i/N_{i-1} nilpotent for all $i = 1, \ldots, k$.

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Commutators:
$$[x,y] = x^{-1}y^{-1}xy$$
 and $[x_1,\ldots,x_k] = \left[[x_1,\ldots,x_{k-1}],x_k
ight]$

G is nilpotent of class c if $\forall x_1, \ldots, x_{c+1} \in G : [x_1, \ldots, x_{c+1}] = 1$.

The Fitting length FitLen(G) (nilpotent length) of G is the smallest k such that there are normal subgroups

$$1 = N_0 \lhd N_1 \lhd \cdots \lhd N_k = G$$

with N_i/N_{i-1} nilpotent for all $i = 1, \ldots, k$.

Example

 $\mathsf{FitLen}(S_3) = 2: \ 1 \lhd C_3 \lhd S_3 \text{ with } S_3/C_3 = C_2$

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Commutators:
$$[x,y]=x^{-1}y^{-1}xy$$
 and $[x_1,\ldots,x_k]=ig[[x_1,\ldots,x_{k-1}],x_kig]$

G is nilpotent of class c if $\forall x_1, \ldots, x_{c+1} \in G : [x_1, \ldots, x_{c+1}] = 1$.

The Fitting length FitLen(G) (nilpotent length) of G is the smallest k such that there are normal subgroups

$$1 = N_0 \lhd N_1 \lhd \cdots \lhd N_k = G$$

with N_i/N_{i-1} nilpotent for all $i = 1, \ldots, k$.

Example

FitLen(S_3) = 2: 1 \triangleleft $C_3 \triangleleft$ S_3 with $S_3/C_3 = C_2$

 $\mathsf{FitLen}(G^*) = 3: \ 1 \lhd (C_3 \times C_3 \times C_3) \lhd (S_3 \times S_3 \times S_3) \lhd G^*$

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Commutators:
$$[x,y]=x^{-1}y^{-1}xy$$
 and $[x_1,\ldots,x_k]=ig[[x_1,\ldots,x_{k-1}],x_kig]$

G is nilpotent of class c if $\forall x_1, \ldots, x_{c+1} \in G : [x_1, \ldots, x_{c+1}] = 1$.

The Fitting length FitLen(G) (nilpotent length) of G is the smallest k such that there are normal subgroups

$$1 = N_0 \lhd N_1 \lhd \cdots \lhd N_k = G$$

with N_i/N_{i-1} nilpotent for all $i = 1, \ldots, k$.

Example

FitLen(S_3) = 2: 1 \triangleleft $C_3 \triangleleft$ S_3 with $S_3/C_3 = C_2$

 $\mathsf{FitLen}(G^*) = 3: \ 1 \lhd (C_3 \times C_3 \times C_3) \lhd (S_3 \times S_3 \times S_3) \lhd G^*$

- $(S_3 \times S_3 \times S_3)/(C_3 \times C_3 \times C_3) = (C_2 \times C_2 \times C_2)$
- $\bullet \quad G^*/(S_3 \times S_3 \times S_3) = C_3$

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Exponential time hypothesis (ETH)

 $\exists \delta > 0$ s.t. every algorithm for 3SAT needs time $\Omega(2^{\delta n})$ (n = number of variables).

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Exponential time hypothesis (ETH)

 $\exists \delta > 0 \text{ s.t. every algorithm for } 3SAT \text{ needs time } \Omega(2^{\delta n})$ (*n* = number of variables).

Sparsification Lemma (Impagliazzo, Paturi, Zane, 2001)

ETH $\implies \exists \epsilon > 0 \text{ s.t. every algorithm for } 3SAT \text{ needs time } \Omega(2^{\epsilon(m+n)})$ (*m* = number of clauses).

Overview

Groups and commutators

Main Result

Proof

Exponential time hypothesis (ETH)

 $\exists \delta > 0 \text{ s.t. every algorithm for } 3SAT \text{ needs time } \Omega(2^{\delta n})$ (*n* = number of variables).

Sparsification Lemma (Impagliazzo, Paturi, Zane, 2001)

ETH $\implies \exists \epsilon > 0 \text{ s.t. every algorithm for } 3SAT \text{ needs time } \Omega(2^{\epsilon(m+n)})$ (*m* = number of clauses).

 \rightsquigarrow no $2^{o(n+m)}$ -time algorithm for 3SAT under ETH.

Overview

Groups and commutators

Main Result

Proof

Theorem

Let G be finite solvable group and assume that either

FitLen(G) \geq 4, or

Overview

Groups and commutators

Main Result

Proof

Theorem

Let G be finite solvable group and assume that either

- FitLen(G) \geq 4, or
- FitLen(G) = 3 and there is no Fitting-length-two normal subgroup whose index is a power of two.

Overview

Groups and commutators

Main Result

Proof

Theorem

Let G be finite solvable group and assume that either

- FitLen(G) \geq 4, or
- FitLen(G) = 3 and there is no Fitting-length-two normal subgroup whose index is a power of two.

Then EQN-SAT(G) and EQN-ID(G) cannot be decided in time $2^{o(\log^2 N)}$ under ETH.

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Theorem

Let G be finite solvable group and assume that either

- FitLen(G) \geq 4, or
- FitLen(G) = 3 and there is no Fitting-length-two normal subgroup whose index is a power of two.

Then EQN-SAT(G) and EQN-ID(G) cannot be decided in time $2^{o(\log^2 N)}$ under ETH.

In particular, EQN-SAT(G) and EQN-ID(G) are not in P under ETH.

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Theorem

Let G be finite solvable group and assume that either

- FitLen(G) \geq 4, or
- FitLen(G) = 3 and there is no Fitting-length-two normal subgroup whose index is a power of two.
- Then EQN-SAT(G) and EQN-ID(G) cannot be decided in time $2^{o(\log^2 N)}$ under ETH.

In particular, EQN-SAT(G) and EQN-ID(G) are not in P under ETH.

What about other groups of Fitting-length three?

Overview

Groups and commutators

Main Result

Proof

Theorem

Let G be finite solvable group and assume that either

- FitLen(G) \geq 4, or
- FitLen(G) = 3 and there is no Fitting-length-two normal subgroup whose index is a power of two.
- Then EQN-SAT(G) and EQN-ID(G) cannot be decided in time $2^{o(\log^2 N)}$ under ETH.

In particular, EQN-SAT(G) and EQN-ID(G) are not in P under ETH.

What about other groups of Fitting-length three?

Theorem (Idziak, Kawałek, Krzaczkowski, LICS 2020)

EQN-SAT(S_4) and EQN-ID(S_4) are not in P under ETH.

 $(S_4 = \text{symmetric group on 4 elements})$

Overview

Groups and commutators

Main Result

Proof

C-COLORING

A *C*-coloring for $C \in \mathbb{N}$ of a graph $\Gamma = (V, E)$ is a map $\chi : V \to [1 .. C]$. A coloring χ valid if $\chi(u) \neq \chi(v)$ whenever $\{u, v\} \in E$.

Overview

Groups and commutators

Main Result

Proof

C-COLORING

A C-coloring for $C \in \mathbb{N}$ of a graph $\Gamma = (V, E)$ is a map $\chi : V \to [1 .. C]$. A coloring χ valid if $\chi(u) \neq \chi(v)$ whenever $\{u, v\} \in E$.

The *C*-COLORING problem:

Input: given an undirected graph $\Gamma = (V, E)$ **Question:** \exists a valid *C*-coloring of Γ ? Armin Weiß

Overview

Groups and commutators

Main Result

Proof

C-COLORING

A C-coloring for $C \in \mathbb{N}$ of a graph $\Gamma = (V, E)$ is a map $\chi : V \to [1 .. C]$. A coloring χ valid if $\chi(u) \neq \chi(v)$ whenever $\{u, v\} \in E$.

The *C*-COLORING problem:

Input: given an undirected graph $\Gamma = (V, E)$ **Question:** \exists a valid *C*-coloring of Γ ?

- ▶ NP-complete for $C \ge 3$
- 3-COLORING cannot be solved in time 2^{o(|V|+|E|)} unless ETH fails (see e. g. Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh, Thm. 14.6).

► ~→ for every C ≥ 3, C-COLORING cannot be solved in time 2^{o(|V|+|E|)} unless ETH fails.

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

$$\begin{aligned} \Gamma = (V, E) \text{ graph with } V &= \{1, \dots, n\} \\ E &= \{e_1, \dots, e_m\} \text{ where } e_k = \{i_k, j_k\} \end{aligned}$$

Overview

Groups and commutators

Main Result

Proof

$$egin{aligned} \Gamma &= (V,E) ext{ graph with } V = \set{1,\ldots,n} \ E &= \set{e_1,\ldots,e_m} ext{ where } e_k = \{i_k,j_k\} \end{aligned}$$

For every vertex *i* introduce a variable X_i .

Overview

Groups and commutators

Main Result

Proof

$$egin{aligned} & \Gamma = (V,E) ext{ graph with } V = \set{1,\ldots,n} \ & E = \set{e_1,\ldots,e_m} ext{ where } e_k = \{i_k,j_k\} \end{aligned}$$

For every vertex *i* introduce a variable X_i .

For every edge
$$e_k = \{i_k, j_k\}$$
 set $\alpha_k = X_{i_k} X_{j_k}^{-1}$.

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

$$egin{aligned} \Gamma &= (V,E) ext{ graph with } V = \set{1,\ldots,n} \ E &= \set{e_1,\ldots,e_m} ext{ where } e_k = \{i_k,j_k\} \end{aligned}$$

Armin Weiß

$$egin{aligned} \Gamma &= (V,E) ext{ graph with } V = \set{1,\ldots,n} \ E &= \set{e_1,\ldots,e_m} ext{ where } e_k = \{i_k,j_k\} \end{aligned}$$

• For every vertex *i* introduce a variable
$$X_i$$
.
• For every edge $e_k = \{i_k, j_k\}$ set $\alpha_k = X_{i_k}X_{j_k}^{-1}$.
• Set $\beta = [d, \alpha_1, \dots, \alpha_m] = [\cdots[[d, \alpha_1], \alpha_2], \dots, \alpha_m]$ (recall $d = (123)$).
Claim

$$\beta = d$$
 is satisfiable $\iff \Gamma$ is 2-colorable.

Armin Weiß

$$egin{aligned} & \Gamma = (V,E) ext{ graph with } V = \set{1,\ldots,n} \ & E = \set{e_1,\ldots,e_m} ext{ where } e_k = \{i_k,j_k\} \end{aligned}$$

► For every vertex *i* introduce a variable
$$X_i$$
.
► For every edge $e_k = \{i_k, j_k\}$ set $\alpha_k = X_{i_k}X_{j_k}^{-1}$.
► Set $\beta = [d, \alpha_1, \dots, \alpha_m] = [\cdots[[d, \alpha_1], \alpha_2], \dots, \alpha_m]$ (recall $d = (123)$).
Claim
 $\beta = d$ is satisfiable $\iff \Gamma$ is 2-colorable.

Proof.

Recall:
$$C_3 \triangleleft S_3$$
 and $S_3/C_3 = C_2$. Let $\sigma : \{X_1, \ldots, X_n\} \rightarrow G$.

$$egin{aligned} \Gamma &= (V,E) ext{ graph with } V = \set{1,\ldots,n} \ E &= \set{e_1,\ldots,e_m} ext{ where } e_k = \{i_k,j_k\} \end{aligned}$$

For every vertex *i* introduce a variable
$$X_i$$
.
For every edge $e_k = \{i_k, j_k\}$ set $\alpha_k = X_{i_k}X_{j_k}^{-1}$.
Set $\beta = [d, \alpha_1, \dots, \alpha_m] = [\cdots[[d, \alpha_1], \alpha_2], \dots, \alpha_m]$ (recall $d = (123)$).
Claim

$$\beta = d$$
 is satisfiable \iff Γ is 2-colorable

Proof.

Recall: $C_3 \triangleleft S_3$ and $S_3/C_3 = C_2$. Let $\sigma : \{X_1, \ldots, X_n\} \rightarrow G$. Define a coloring $\chi_{\sigma}: V \to \{1, 2\}$ by $\chi_{\sigma}(i) = 1 \iff \sigma(X_i) \in C_3$.

Armin Weiß

$$egin{aligned} & \Gamma = (V,E) ext{ graph with } V = \set{1,\ldots,n} \ & E = \set{e_1,\ldots,e_m} ext{ where } e_k = \{i_k,j_k\} \end{aligned}$$

For every vertex *i* introduce a variable
$$X_i$$
.
For every edge $e_k = \{i_k, j_k\}$ set $\alpha_k = X_{i_k}X_{j_k}^{-1}$.
Set $\beta = [d, \alpha_1, \dots, \alpha_m] = [\cdots[[d, \alpha_1], \alpha_2], \dots, \alpha_m]$ (recall $d = (123)$).
Claim

$$\beta = d$$
 is satisfiable $\iff \Gamma$ is 2-colorable.

Proof.

Recall:
$$C_3 \triangleleft S_3$$
 and $S_3/C_3 = C_2$. Let $\sigma : \{X_1, \ldots, X_n\} \rightarrow G$.
Define a coloring $\chi_{\sigma} : V \rightarrow \{1, 2\}$ by $\chi_{\sigma}(i) = 1 \iff \sigma(X_i) \in C_3$.

$$\sigma([d, \alpha_1]) = \begin{cases} 1 & \text{if } \sigma(\alpha_1) \in C_3 \\ d & \text{if } \sigma(\alpha_1) \notin C_3 \end{cases}$$

$$egin{aligned} & \Gamma = (V,E) ext{ graph with } V = \set{1,\ldots,n} \ & E = \set{e_1,\ldots,e_m} ext{ where } e_k = \{i_k,j_k\} \end{aligned}$$

For every vertex *i* introduce a variable
$$X_i$$
.
For every edge $e_k = \{i_k, j_k\}$ set $\alpha_k = X_{i_k}X_{j_k}^{-1}$.
Set $\beta = [d, \alpha_1, \dots, \alpha_m] = [\cdots[[d, \alpha_1], \alpha_2], \dots, \alpha_m]$ (recall $d = (123)$).
Claim

$$\beta = d$$
 is satisfiable $\iff \Gamma$ is 2-colorable.

Proof.

Recall:
$$C_3 \triangleleft S_3$$
 and $S_3/C_3 = C_2$. Let $\sigma : \{X_1, \ldots, X_n\} \rightarrow G$.
Define a coloring $\chi_{\sigma} : V \rightarrow \{1, 2\}$ by $\chi_{\sigma}(i) = 1 \iff \sigma(X_i) \in C_3$.

$$\sigma([\mathbf{d},\alpha_1]) = \begin{cases} 1 & \text{if } \sigma(\alpha_1) \in \mathbf{C}_3 \\ \mathbf{d} & \text{if } \sigma(\alpha_1) \notin \mathbf{C}_3 \iff \chi_{\sigma}(i_1) \neq \chi_{\sigma}(j_1) \end{cases}$$

$$\begin{aligned} \Gamma &= (V,E) \text{ graph with } V &= \{1,\ldots,n\} \\ & E &= \{e_1,\ldots,e_m\} \text{ where } e_k = \{i_k,j_k\} \end{aligned}$$

For every vertex *i* introduce a variable X_i.
For every edge
$$e_k = \{i_k, j_k\}$$
 set $\alpha_k = X_{i_k}X_{j_k}^{-1}$.
For every edge $e_k = \{i_k, j_k\}$ set $\alpha_k = X_{i_k}X_{j_k}^{-1}$.
For $\beta = [d, \alpha_1, \dots, \alpha_m] = [\cdots[[d, \alpha_1], \alpha_2], \dots, \alpha_m]$ (recall $d = (123)$).
Length: $|\beta| \approx 2^m$.
 $[d, \alpha_1] = d^{-1}\alpha_1^{-1}d\alpha_1$

$$\begin{bmatrix} d, \alpha_1 \end{bmatrix} = d^{-1}\alpha_1 \ d\alpha_1 \\ \begin{bmatrix} d, \alpha_1, \alpha_2 \end{bmatrix} = \alpha_1^{-1} d^{-1}\alpha_1 d\alpha_2^{-1} d^{-1}\alpha_1^{-1} d\alpha_1 \alpha_2 \\ \begin{bmatrix} d, \alpha_1, \alpha_2, \alpha_3 \end{bmatrix} = \alpha_2^{-1}\alpha_1^{-1} d^{-1}\alpha_1 d\alpha_2 d^{-1}\alpha_1^{-1} d\alpha_1 \alpha_3^{-1} \alpha_1^{-1} d^{-1}\alpha_1 d\alpha_2^{-1} d^{-1}\alpha_1^{-1} d\alpha_1 \alpha_2 \alpha_3$$

Armin Weiß

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$ $\Gamma = (V, E)$ graph with $V = \{1, \dots, n\}$, $E = \{e_1, \dots, e_m\}$.

Overview

Groups and commutators

Main Result

Proof

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

 $\Gamma = (V, E)$ graph with $V = \{1, ..., n\}$, $E = \{e_1, ..., e_m\}$.

For every vertex *i* introduce a variable X_i .

Overview

Groups and commutators

Main Result

Proof

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, \ldots, n\}$, $E = \{e_1, \ldots, e_m\}$.
 - For every vertex *i* introduce a variable X_i .
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}}X_{j_{k,\ell}}^{-1}$.

Overview

Groups and commutators

Main Result

Proof

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, ..., n\}$, $E = \{e_1, ..., e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}}X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .

Overview

Groups and commutators

Main Result

Proof

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, ..., n\}$, $E = \{e_1, ..., e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .
 - Set $\gamma = [(d, 1, 1), \beta_1, \dots, \beta_{\mu}].$

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, \ldots, n\}$, $E = \{e_1, \ldots, e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .
 - Set $\gamma = [(d, 1, 1), \beta_1, \dots, \beta_{\mu}].$

Claim

 $\gamma = (d, 1, 1)$ is satisfiable $\iff \Gamma$ is 3-colorable.

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, ..., n\}$, $E = \{e_1, ..., e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .
 - Set $\gamma = [(d, 1, 1), \beta_1, \dots, \beta_{\mu}].$

Key Observation

 $|eta_k| pprox 2^\mu \ \leadsto \ |\gamma| pprox 2^\mu \cdot 2^\mu pprox 2^{2\sqrt{m}}$

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, ..., n\}$, $E = \{e_1, ..., e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .
 - Set $\gamma = [(d, 1, 1), \beta_1, \dots, \beta_{\mu}].$

Key Observation

 $|eta_k| pprox 2^\mu \ \leadsto \ |\gamma| pprox 2^\mu \cdot 2^\mu pprox 2^{2\sqrt{m}}$

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Recall:
$$G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$$

- $\Gamma = (V, E)$ graph with $V = \{1, \ldots, n\}$, $E = \{e_1, \ldots, e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .
 - Set $\gamma = [(d, 1, 1), \beta_1, \dots, \beta_{\mu}].$

Key Observation

 $|\beta_k| pprox 2^{\mu} \rightsquigarrow |\gamma| pprox 2^{\mu} \cdot 2^{\mu} pprox 2^{2\sqrt{m}}$

Assume EQN-SAT(G^*) decidable in time $2^{o(\log^2 N)}$ (N = equation length).

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, \ldots, n\}$, $E = \{e_1, \ldots, e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .
 - Set $\gamma = [(d, 1, 1), \beta_1, \dots, \beta_{\mu}].$

Key Observation

$$|eta_k|pprox 2^\mu \ \leadsto \ |\gamma|pprox 2^\mu\cdot 2^\mupprox 2^{2\sqrt{m}}$$

Assume EQN-SAT(G^*) decidable in time $2^{o(\log^2 N)}$ (N = equation length). Then we can solve 3-COLORING in time $2^{o(n+m)}$: with $N = 2^{2\sqrt{m}}$ we have $2^{o(\log^2 2^{2\sqrt{m}})} = 2^{o(\sqrt{m}^2)} = 2^{o(m)}$

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

Recall: $G^* = (S_3 \times S_3 \times S_3) \rtimes C_3$

- $\Gamma = (V, E)$ graph with $V = \{1, \ldots, n\}$, $E = \{e_1, \ldots, e_m\}$.
 - ► For every vertex *i* introduce a variable X_i.
 - Group the edges in $\mu \approx \sqrt{m}$ groups of μ edges each.
 - ► For every edge $e_{k,\ell} = \{i_{k,\ell}, j_{k,\ell}\}$ set $\alpha_{k,\ell} = X_{i_{k,\ell}} X_{j_{k,\ell}}^{-1}$.
 - Set $\beta_k = Y_k^{-1}[(s, 1, 1), \alpha_{k,1}, \dots, \alpha_{k,\mu}]Y_k$ for a new variable Y_k .
 - Set $\gamma = [(d, 1, 1), \beta_1, \dots, \beta_{\mu}].$

Key Observation

$$|eta_k|pprox 2^\mu \ \leadsto \ |\gamma|pprox 2^\mu\cdot 2^\mupprox 2^{2\sqrt{m}}$$

Assume EQN-SAT(G^*) decidable in time $2^{o(\log^2 N)}$ (N = equation length). Then we can solve 3-COLORING in time $2^{o(n+m)}$: with $N = 2^{2\sqrt{m}}$ we have $2^{o(\log^2 2^{2\sqrt{m}})} = 2^{o(\sqrt{m}^2)} = 2^{o(m)}$ contradicting ETH.

Armin Weiß

Overview

Sroups and commutators

Main Result

Proof

Quasipolynomial lower bound for EQN-SAT(G) and EQN-ID(G) under ETH if G if of Fitting length 3 and complicated enough.

Overview

Groups and commutators

Main Result

Proof

- Quasipolynomial lower bound for EQN-SAT(G) and EQN-ID(G) under ETH if G if of Fitting length 3 and complicated enough.
- Generalization to all groups of Fitting length 3 under preparation (in collaboration with Idziak, Kawałek, Krzaczkowski).

Overview

Groups and commutators

Main Result

Proof

- Quasipolynomial lower bound for EQN-SAT(G) and EQN-ID(G) under ETH if G if of Fitting length 3 and complicated enough.
- Generalization to all groups of Fitting length 3 under preparation (in collaboration with Idziak, Kawałek, Krzaczkowski).

What about groups of Fitting length two?

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

- Quasipolynomial lower bound for EQN-SAT(G) and EQN-ID(G) under ETH if G if of Fitting length 3 and complicated enough.
- Generalization to all groups of Fitting length 3 under preparation (in collaboration with Idziak, Kawałek, Krzaczkowski).
- What about groups of Fitting length two?
- Conjecture: if G is finite solvable, then EQN-SAT(G) and EQN-ID(G) are decidable in quasipolynomial time.

Armin Weiß

Overview

Groups and commutators

Main Result

Proof

- Quasipolynomial lower bound for EQN-SAT(G) and EQN-ID(G) under ETH if G if of Fitting length 3 and complicated enough.
- Generalization to all groups of Fitting length 3 under preparation (in collaboration with Idziak, Kawałek, Krzaczkowski).
- What about groups of Fitting length two?
- Conjecture: if G is finite solvable, then EQN-SAT(G) and EQN-ID(G) are decidable in quasipolynomial time.

Thank you!

Armin Weiß

Overview

Groups and commutators

Main Result

Proof