Conjugacy in Baumslag's group, generic case complexity, and division in power circuits

Volker Diekert¹, Alexei G. Myasnikov², Armin Weiß¹

¹FMI, Universität Stuttgart, Germany

²Department of Mathematics, Stevens Institute of Technology, Hoboken, NJ, USA

Montevideo, March 31, 2014

• Word problem. Is $w \in \Sigma^* = 1$ in G?

- Word problem. Is $w \in \Sigma^* = 1$ in G?
- Conjugacy problem. Given v, w ∈ Σ*. Question: v ~ w? This means, is there some z ∈ G such that zvz⁻¹ = w?

- Word problem. Is $w \in \Sigma^* = 1$ in G?
- Conjugacy problem. Given v, w ∈ Σ*. Question: v ~ w? This means, is there some z ∈ G such that zvz⁻¹ = w?

Here: conjugacy problem.

Baumslag-Solitar group: $\mathbf{BS}_{1,2} = \mathbb{Z}[1/2] \rtimes \mathbb{Z}$ = { (r, m) | r $\in \mathbb{Z}[1/2], m \in \mathbb{Z}$ }

 $(\mathbb{Z}[1/2] = \{ p/2^q \in \mathbb{Q} \mid p,q \in \mathbb{Z} \})$, with multiplication

$$(r,m)\cdot(s,q)=(r+2^ms,m+q).$$

Baumslag-Solitar group: $\mathbf{BS}_{1,2} = \mathbb{Z}[1/2] \rtimes \mathbb{Z}$ = { (r, m) | r $\in \mathbb{Z}[1/2], m \in \mathbb{Z}$ }

 $(\mathbb{Z}[1/2] = \{ \ p/2^q \in \mathbb{Q} \ \mid \ p,q \in \mathbb{Z} \ \})$, with multiplication

$$(r,m)\cdot(s,q)=(r+2^ms,m+q).$$

Theorem (D., M., W.)

The conjugacy problem of $BS_{1,2}$ is TC^0 -complete.

Proof: see proceedings, uses DIVISION is in uniform TC^0 (Hesse, 2001).

Baumslag group:
$$\mathbf{G}_{1,2} = \mathbf{BS}_{1,2} * \langle b \rangle / \{ b(1,0) b^{-1} = (0,1) \}$$

= $\langle a, b | (bab^{-1}) a (bab^{-1})^{-1} = a^2 \rangle$

The Baumslag group is an HNN extension of the Baumslag-Solitar group.

Baumslag group:
$$\mathbf{G}_{1,2} = \mathbf{BS}_{1,2} * \langle b \rangle / \{ b(1,0) b^{-1} = (0,1) \}$$

= $\langle a, b | (bab^{-1}) a (bab^{-1})^{-1} = a^2 \rangle$

The Baumslag group is an HNN extension of the Baumslag-Solitar group.

Theorem (Myasnikov, Ushakov, Won, 2006)

The word problem of $\mathbf{G}_{1,2}$ is in P.

Theorem (D., M., W.)

There is an algorithm to decide the conjugacy problem of $G_{1,2}$. It runs in polynomial time on a strongly generic subset of inputs.

A set $S \subseteq \Sigma^*$ is called strongly generic if there is some $\varepsilon > 0$ such that

$$\frac{|\Sigma^n \setminus S|}{|\Sigma^n|} \le 2^{-\varepsilon n}.$$

A set $S \subseteq \Sigma^*$ is called strongly generic if there is some $\varepsilon > 0$ such that

$$\frac{|\Sigma^n \setminus S|}{|\Sigma^n|} \le 2^{-\varepsilon n}.$$

Thus, from a practical viewpoint, "random inputs are always in S".

Difficulty of the word problem in $G_{1,2}$

$$au = ext{tower function}$$
: $au(0) = 0$, $au(n+1) = 2^{ au(n)}$.

Solving the word problem using Britton reductions:

$$b(k,0)b^{-1} o (0,k) \qquad \qquad b^{-1}(k,0)b o (0,k)$$

leads to non-elementary blow-up. Define words w_n inductively such that $w_n = (0, \tau(n))$ in $\mathbf{G}_{1,2}$ for $n \ge 0$. More precisely, $w_0 := \text{empty}$ word. Then $w_0 = (0, 0) = 1$ in $\mathbf{G}_{1,2}$ and:

$$w_{n+1} := b \cdot w_n \cdot (1,0) \cdot w_n^{-1} \cdot b^{-1}$$

= $b \cdot (0,\tau(n)) \cdot (1,0) \cdot (0,-\tau(n)) \cdot b^{-1}$
= $b \cdot (\tau(n+1),0) \cdot b^{-1}$
= $(0,\tau(n+1))$

Difficulty of the word problem in $G_{1,2}$

$$au = ext{tower function}$$
: $au(0) = 0$, $au(n+1) = 2^{ au(n)}$.

Solving the word problem using Britton reductions:

$$b(k,0)b^{-1} o (0,k) \qquad b^{-1}(k,0)b o (0,k)$$

leads to non-elementary blow-up. Define words w_n inductively such that $w_n = (0, \tau(n))$ in $\mathbf{G}_{1,2}$ for $n \ge 0$. More precisely, $w_0 := \text{empty}$ word. Then $w_0 = (0, 0) = 1$ in $\mathbf{G}_{1,2}$ and:

$$w_{n+1} := b \cdot w_n \cdot (1,0) \cdot w_n^{-1} \cdot b^{-1}$$

= $b \cdot (0,\tau(n)) \cdot (1,0) \cdot (0,-\tau(n)) \cdot b^{-1}$
= $b \cdot (\tau(n+1),0) \cdot b^{-1}$
= $(0,\tau(n+1))$

 $|w_n| \in 2^{\Theta(n)}$, but w_n is a huge compression for the number $\tau(n)$.

Power circuits

Write numbers as binary sums ∑_{i∈I} α_i · 2^{p_i} (α_i ∈ {−1, +1})
Recursively repeat this for all p_i

Myasnikov, Ushakov, Won (2006) in IJAC 2011

$$\varepsilon(\mathbf{v}) = 2^{+16-4-1} = 2048$$

Power circuits

Write numbers as binary sums ∑_{i∈I} α_i · 2^{p_i} (α_i ∈ {−1, +1})
Recursively repeat this for all p_i

Myasnikov, Ushakov, Won (2006) in IJAC 2011

$$\varepsilon(M) = \sum_{v \in M} \pm \varepsilon(v)$$
$$= 2048 - 32 - 2$$
$$= 2014$$

$$\varepsilon(M) = 65536$$

$$arepsilon({\it {\it M}})=2^{65536}>$$
 number of atoms in the universe

$$\varepsilon(M) = 2^{2^{65536}}$$
 impossible to write down in binary

 $\varepsilon(M) =$ huuuge number

Proposition (Myasnikov, Ushakov, Won, 2006)

Basic arithmetic operations (comparison, addition, $(x, y) \mapsto x \cdot 2^{y}$) in power circuits can be performed in polynomial time and with only a "small" blow-up.

Theorem (Myasnikov, Ushakov, Won, 2006)

The word problem of $\mathbf{G}_{1,2}$ is in P.

Theorem (Diekert, Laun, Ushakov, STACS 2012)

The word problem of $\mathbf{G}_{1,2}$ is can be solved in $\mathcal{O}(n^3)$.

Difficulty of the conjugacy problem in $G_{1,2}$

In
$$BS_{1,2} \leq G_{1,2}$$
 we have (for $m \geq 2$)

$$(r,m) \sim_{\mathsf{BS}_{1,2}} (s,q) \iff m = q ext{ and } \exists k \in \mathbb{N} : 0 \le k < m ext{ such that}$$

 $(2^m - 1) \mid (r \cdot 2^k - s)$

 \rightsquigarrow need to check divisibility in power circuits.

In
$$\mathbf{BS}_{1,2} \leq \mathbf{G}_{1,2}$$
 we have (for $m \geq 2$)

$$(r,m) \sim_{\mathsf{BS}_{1,2}} (s,q) \iff m = q ext{ and } \exists k \in \mathbb{N} : 0 \le k < m ext{ such that}$$

 $(2^m - 1) \mid (r \cdot 2^k - s)$

 \rightsquigarrow need to check divisibility in power circuits.

Proposition

There is an exponential time reduction from the divisibility problem in power circuits to the conjugacy problem in $G_{1,2}$.

Modulo is impossible in elementary time: $x = 2^{65536}$, $\lambda = 2^{x}$

$$\left(2^{\lambda}
ight)^{x} \mod 2^{\lambda}-\lambda-1 =$$

Modulo is impossible in elementary time: $x = 2^{65536}$, $\lambda = 2^{x}$

$$\left(2^{\lambda}
ight)^{x} \mod 2^{\lambda}-\lambda-1 = (\lambda+1)^{x} =$$

Modulo is impossible in elementary time: $x = 2^{65536}$, $\lambda = 2^x$

$$(2^{\lambda})^{x} \mod 2^{\lambda} - \lambda - 1 = (\lambda + 1)^{x} = \sum_{i=0}^{x} {x \choose i} \lambda^{i} =: X$$

Modulo is impossible in elementary time: $x = 2^{65536}$, $\lambda = 2^{x}$

$$\left(2^{\lambda}
ight)^{x} \mod 2^{\lambda}-\lambda-1 \ = \ (\lambda+1)^{x} \ = \ \sum_{i=0}^{x} \binom{x}{i} \lambda^{i} \ =: X$$

• Divisibility test cannot be done in elementary time by calculating modulo.

- Divisibility test cannot be done in elementary time by calculating modulo.
- The trivial algorithm (convert to binary) needs non-elementary time.

- Divisibility test cannot be done in elementary time by calculating modulo.
- The trivial algorithm (convert to binary) needs non-elementary time.
- There might be another way to check divisibility.

- Divisibility test cannot be done in elementary time by calculating modulo.
- The trivial algorithm (convert to binary) needs non-elementary time.
- There might be another way to check divisibility.
- As markings are sums of vertices, it seems unlikely that divisibility can be tested without knowing the modulo value of the vertices.

- Divisibility test cannot be done in elementary time by calculating modulo.
- The trivial algorithm (convert to binary) needs non-elementary time.
- There might be another way to check divisibility.
- As markings are sums of vertices, it seems unlikely that divisibility can be tested without knowing the modulo value of the vertices.

Good news: the conjugacy problem in $G_{1,2}$ is only difficult for elements in $BS_{1,2}$.

Let $v, w \in \{(0, 1), (1, 0), (0, -1), (-1, 0), b, b^{-1}\}^*$ be cyclically reduced words (no factor $b(k, 0)b^{-1}$ or $b^{-1}(0, k)b$ in vv and ww) such that in v and w occurs at least one letter b or b^{-1} . Then $v \sim w$ if and only if there is a cyclic permutation w' of w and some $x \in \mathbf{BS}_{1,2}$ such that $v = xw'x^{-1}$.

Let $v, w \in \{(0, 1), (1, 0), (0, -1), (-1, 0), b, b^{-1}\}^*$ be cyclically reduced words (no factor $b(k, 0)b^{-1}$ or $b^{-1}(0, k)b$ in vv and ww) such that in v and w occurs at least one letter b or b^{-1} . Then $v \sim w$ if and only if there is a cyclic permutation w' of w and some $x \in \mathbf{BS}_{1,2}$ such that $v = xw'x^{-1}$.

• There are only linearly many candidates for w'.

Let $v, w \in \{(0, 1), (1, 0), (0, -1), (-1, 0), b, b^{-1}\}^*$ be cyclically reduced words (no factor $b(k, 0)b^{-1}$ or $b^{-1}(0, k)b$ in vv and ww) such that in v and w occurs at least one letter b or b^{-1} . Then $v \sim w$ if and only if there is a cyclic permutation w' of w and some $x \in \mathbf{BS}_{1,2}$ such that $v = xw'x^{-1}$.

- There are only linearly many candidates for w'.
- If v, w ∉ BS_{1,2}, then some x ∈ BS_{1,2} with v = xw'x⁻¹ can be determined using only division by powers of 2.
 → such x can be determined in polynomial time.

Let $v, w \in \{(0, 1), (1, 0), (0, -1), (-1, 0), b, b^{-1}\}^*$ be cyclically reduced words (no factor $b(k, 0)b^{-1}$ or $b^{-1}(0, k)b$ in vv and ww) such that in v and w occurs at least one letter b or b^{-1} . Then $v \sim w$ if and only if there is a cyclic permutation w' of w and some $x \in \mathbf{BS}_{1,2}$ such that $v = xw'x^{-1}$.

- There are only linearly many candidates for w'.
- If v, w ∉ BS_{1,2}, then some x ∈ BS_{1,2} with v = xw'x⁻¹ can be determined using only division by powers of 2.
 → such x can be determined in polynomial time.

Proposition

The conjugacy problem of $G_{1,2}$ for elements $v, w \notin BS_{1,2}$ is in P.

Theorem

The set
$$\{a, a^{-1}, b, b^{-1}\}^* \setminus BS_{1,2}$$
 is strongly generic in $\{a, a^{-1}, b, b^{-1}\}^*$.

Proof.

- By random walk techniques.
- Uses the fact that Britton reductions can be described by Dyck words.

Corollary

There is an algorithm to decide the conjugacy problem of $G_{1,2}$. It runs in polynomial time on a strongly generic subset of inputs.

- The conjugacy problem of $\boldsymbol{G}_{1,2}$ is strongly generically in P.
- Our algorithm has non-elementary average case complexity.

- \bullet The conjugacy problem of $\boldsymbol{G}_{1,2}$ is strongly generically in P.
- Our algorithm has non-elementary average case complexity.

Conjecture

The conjugacy problem in $\boldsymbol{\mathsf{G}}_{1,2}$ is not solvable in elementary time on average.

- \bullet The conjugacy problem of $\boldsymbol{G}_{1,2}$ is strongly generically in P.
- Our algorithm has non-elementary average case complexity.

Conjecture

The conjugacy problem in $\boldsymbol{\mathsf{G}}_{1,2}$ is not solvable in elementary time on average.

• Lower bounds for the divisibility problem in power circuits?

- \bullet The conjugacy problem of $\boldsymbol{G}_{1,2}$ is strongly generically in P.
- Our algorithm has non-elementary average case complexity.

Conjecture

The conjugacy problem in $\boldsymbol{\mathsf{G}}_{1,2}$ is not solvable in elementary time on average.

- Lower bounds for the divisibility problem in power circuits?
- Complexity of the conjugacy problem of $\mathbf{BS}_{p,q} = \langle a, t \mid ta^{p}t^{-1} = a^{q} \rangle$ for |p|, |q| > 1?

Conjecture

The conjugacy problem in $\mathbf{BS}_{p,q}$ is in LOGSPACE.

- \bullet The conjugacy problem of $\boldsymbol{G}_{1,2}$ is strongly generically in P.
- Our algorithm has non-elementary average case complexity.

Conjecture

The conjugacy problem in $\boldsymbol{\mathsf{G}}_{1,2}$ is not solvable in elementary time on average.

- Lower bounds for the divisibility problem in power circuits?
- Complexity of the conjugacy problem of $\mathbf{BS}_{p,q} = \langle a, t \mid ta^{p}t^{-1} = a^{q} \rangle$ for |p|, |q| > 1?

Conjecture

The conjugacy problem in $\mathbf{BS}_{p,q}$ is in LOGSPACE.

Thank you!