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Dehn’s fundamental problems

Let G be a group, generated by a finite set Σ with Σ = Σ−1 ⊆ G .

Word problem. Is w ∈ Σ∗ = 1 in G?

Conjugacy problem. Given v ,w ∈ Σ∗. Question: v ∼ w?
This means, is there some z ∈ G such that zvz−1 = w?

Here: conjugacy problem.
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The Baumslag-Solitar group, a semi-direct product

Baumslag-Solitar group: BS1,2 = Z[1/2] o Z
= { (r ,m) | r ∈ Z[1/2],m ∈ Z }

(Z[1/2] = { p/2q ∈ Q | p, q ∈ Z }), with multiplication

(r ,m) · (s, q) = (r + 2ms,m + q).

Theorem (D., M., W.)

The conjugacy problem of BS1,2 is TC0-complete.

Proof: see proceedings, uses DIVISION is in uniform TC0 (Hesse,
2001).
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The Baumslag(-Gersten) group

Baumslag group: G1,2 = BS1,2 ∗ 〈b〉 /
{
b (1, 0) b−1 = (0, 1)

}
=
〈
a, b | (bab−1) a (bab−1)−1 = a2

〉
The Baumslag group is an HNN extension of the Baumslag-Solitar
group.

Theorem (Myasnikov, Ushakov, Won, 2006)

The word problem of G1,2 is in P.

Theorem (D., M., W.)

There is an algorithm to decide the conjugacy problem of G1,2. It
runs in polynomial time on a strongly generic subset of inputs.
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Generic complexity

A set S ⊆ Σ∗ is called strongly generic if there is some ε > 0 such
that

|Σn \ S |
|Σn|

≤ 2−εn.

Thus, from a practical viewpoint, “random inputs are always in S”.
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Difficulty of the word problem in G1,2

τ = tower function: τ(0) = 0, τ(n + 1) = 2τ(n).

Solving the word problem using Britton reductions:

b(k , 0)b−1 → (0, k) b−1(k, 0)b → (0, k)

leads to non-elementary blow-up. Define words wn inductively such
that wn = (0, τ(n)) in G1,2 for n ≥ 0. More precisely, w0 := empty
word. Then w0 = (0, 0) = 1 in G1,2 and:

wn+1 := b · wn · (1, 0) · w−1
n · b−1

= b · (0, τ(n)) · (1, 0) · (0,−τ(n)) · b−1

= b · (τ(n + 1), 0) · b−1

= (0, τ(n + 1))

|wn| ∈ 2Θ(n), but wn is a huge compression for the number τ(n).
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Power circuits

Write numbers as binary sums
∑

i∈I αi · 2pi (αi ∈ {−1,+1})
Recursively repeat this for all pi

Myasnikov, Ushakov, Won (2006)
in IJAC 2011
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Power circuits can represent huge numbers
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ε(M) = 65536
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ε(M) = 265536 > number of atoms in the universe
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Solving the word problem in G1,2

Proposition (Myasnikov, Ushakov, Won, 2006)

Basic arithmetic operations (comparison, addition, (x , y) 7→ x · 2y )
in power circuits can be performed in polynomial time and with
only a “small” blow-up.

Theorem (Myasnikov, Ushakov, Won, 2006)

The word problem of G1,2 is in P.

Theorem (Diekert, Laun, Ushakov, STACS 2012)

The word problem of G1,2 is can be solved in O(n3).
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Difficulty of the conjugacy problem in G1,2

In BS1,2 ≤ G1,2 we have (for m ≥ 2)

(r ,m) ∼BS1,2 (s, q) ⇐⇒ m = q and ∃k ∈ N : 0 ≤ k < m such that

(2m − 1) | (r · 2k − s)

 need to check divisibility in power circuits.

Proposition

There is an exponential time reduction from the divisibility problem
in power circuits to the conjugacy problem in G1,2.
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Divisibility cannot be reduced to modulo

Modulo is impossible in elementary time: x = 265536, λ = 2x(
2λ
)x

mod 2λ − λ− 1 =

(λ+ 1)x =
x∑
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mod = X︸︷︷︸
impossible to write down

in binary or as power circuit

since compact representation
contains too many 1s
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Divisibility in power circuits

Divisibility test cannot be done in elementary time by
calculating modulo.

The trivial algorithm (convert to binary) needs non-elementary
time.

There might be another way to check divisibility.

As markings are sums of vertices, it seems unlikely that
divisibility can be tested without knowing the modulo value of
the vertices.

Good news: the conjugacy problem in G1,2 is only difficult for
elements in BS1,2.
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Solving the conjugacy problem in G1,2

Lemma (Collin’s Lemma for HNN extensions)

Let v ,w ∈
{

(0, 1), (1, 0), (0,−1), (−1, 0), b, b−1
}∗

be cyclically
reduced words (no factor b(k , 0)b−1 or b−1(0, k)b in vv and ww)
such that in v and w occurs at least one letter b or b−1. Then
v ∼ w if and only if there is a cyclic permutation w ′ of w and
some x ∈ BS1,2 such that v = xw ′x−1.

There are only linearly many candidates for w ′.

If v ,w 6∈ BS1,2, then some x ∈ BS1,2 with v = xw ′x−1 can
be determined using only division by powers of 2.
 such x can be determined in polynomial time.

Proposition

The conjugacy problem of G1,2 for elements v ,w 6∈ BS1,2 is in P.
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Solving the conjugacy problem in G1,2

Theorem

The set
{
a, a−1, b, b−1

}∗ \ BS1,2 is strongly generic in{
a, a−1, b, b−1

}∗
.

Proof.

By random walk techniques.

Uses the fact that Britton reductions can be described by
Dyck words.

Corollary

There is an algorithm to decide the conjugacy problem of G1,2. It
runs in polynomial time on a strongly generic subset of inputs.
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Conclusion

The conjugacy problem of G1,2 is strongly generically in P.

Our algorithm has non-elementary average case complexity.

Conjecture

The conjugacy problem in G1,2 is not solvable in elementary time
on average.

Lower bounds for the divisibility problem in power circuits?

Complexity of the conjugacy problem of
BSp,q =

〈
a, t | tapt−1 = aq

〉
for |p| , |q| > 1?

Conjecture

The conjugacy problem in BSp,q is in LOGSPACE.

Thank you!
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