Conjugacy in Baumslag's group, generic case complexity, and division in power circuits

Volker Diekert ${ }^{1}$, Alexei G. Myasnikov ${ }^{2}$, Armin Weiß ${ }^{1}$
${ }^{1}$ FMI, Universität Stuttgart, Germany
${ }^{2}$ Department of Mathematics, Stevens Institute of Technology, Hoboken, NJ, USA

Montevideo, March 31, 2014

Dehn's fundamental problems

Let G be a group, generated by a finite set Σ with $\Sigma=\Sigma^{-1} \subseteq G$.

Dehn's fundamental problems

Let G be a group, generated by a finite set Σ with $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem. Is $w \in \Sigma^{*}=1$ in G ?

Dehn's fundamental problems

Let G be a group, generated by a finite set Σ with $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem. Is $w \in \Sigma^{*}=1$ in G ?
- Conjugacy problem. Given $v, w \in \Sigma^{*}$. Question: $v \sim w$? This means, is there some $z \in G$ such that $z v z^{-1}=w$?

Dehn's fundamental problems

Let G be a group, generated by a finite set Σ with $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem. Is $w \in \Sigma^{*}=1$ in G ?
- Conjugacy problem. Given $v, w \in \Sigma^{*}$. Question: $v \sim w$? This means, is there some $z \in G$ such that $z v z^{-1}=w$?

Here: conjugacy problem.

The Baumslag-Solitar group, a semi-direct product

Baumslag-Solitar group: \quad BS $_{1,2}=\mathbb{Z}[1 / 2] \rtimes \mathbb{Z}$

$$
=\{(r, m) \mid r \in \mathbb{Z}[1 / 2], m \in \mathbb{Z}\}
$$

$\left(\mathbb{Z}[1 / 2]=\left\{p / 2^{q} \in \mathbb{Q} \mid p, q \in \mathbb{Z}\right\}\right)$, with multiplication

$$
(r, m) \cdot(s, q)=\left(r+2^{m} s, m+q\right)
$$

Baumslag-Solitar group: $\quad \mathbf{B S}_{1,2}=\mathbb{Z}[1 / 2] \rtimes \mathbb{Z}$

$$
=\{(r, m) \mid r \in \mathbb{Z}[1 / 2], m \in \mathbb{Z}\}
$$

$\left(\mathbb{Z}[1 / 2]=\left\{p / 2^{q} \in \mathbb{Q} \mid p, q \in \mathbb{Z}\right\}\right)$, with multiplication

$$
(r, m) \cdot(s, q)=\left(r+2^{m} s, m+q\right)
$$

Theorem (D., M., W.)

The conjugacy problem of $\mathbf{B S}_{1,2}$ is TC^{0}-complete.
Proof: see proceedings, uses DIVISION is in uniform TC ${ }^{0}$ (Hesse, 2001).

$$
\text { Baumslag group: } \quad \begin{aligned}
\mathbf{G}_{1,2} & =\mathbf{B S}_{1,2} *\langle b\rangle /\left\{b(1,0) b^{-1}=(0,1)\right\} \\
& =\left\langle a, b \mid\left(b a b^{-1}\right) a\left(b a b^{-1}\right)^{-1}=a^{2}\right\rangle
\end{aligned}
$$

The Baumslag group is an HNN extension of the Baumslag-Solitar group.

The Baumslag(-Gersten) group

Baumslag group: $\mathbf{G}_{1,2}=\mathbf{B S}_{1,2} *\langle b\rangle /\left\{b(1,0) b^{-1}=(0,1)\right\}$ $=\left\langle a, b \mid\left(b a b^{-1}\right) a\left(b a b^{-1}\right)^{-1}=a^{2}\right\rangle$

The Baumslag group is an HNN extension of the Baumslag-Solitar group.

Theorem (Myasnikov, Ushakov, Won, 2006)

The word problem of $\mathbf{G}_{1,2}$ is in P .

Theorem (D., M., W.)

There is an algorithm to decide the conjugacy problem of $\mathbf{G}_{1,2}$. It runs in polynomial time on a strongly generic subset of inputs.

Generic complexity

A set $S \subseteq \Sigma^{*}$ is called strongly generic if there is some $\varepsilon>0$ such that

$$
\frac{\left|\Sigma^{n} \backslash S\right|}{\left|\Sigma^{n}\right|} \leq 2^{-\varepsilon n}
$$

Generic complexity

A set $S \subseteq \Sigma^{*}$ is called strongly generic if there is some $\varepsilon>0$ such that

$$
\frac{\left|\Sigma^{n} \backslash S\right|}{\left|\Sigma^{n}\right|} \leq 2^{-\varepsilon n} .
$$

Thus, from a practical viewpoint, "random inputs are always in S ".

Difficulty of the word problem in $\mathbf{G}_{1,2}$

$$
\tau=\text { tower function: } \quad \tau(0)=0, \quad \tau(n+1)=2^{\tau(n)} .
$$

Solving the word problem using Britton reductions:

$$
b(k, 0) b^{-1} \rightarrow(0, k) \quad b^{-1}(k, 0) b \rightarrow(0, k)
$$

leads to non-elementary blow-up. Define words w_{n} inductively such that $w_{n}=(0, \tau(n))$ in $\mathbf{G}_{1,2}$ for $n \geq 0$. More precisely, $w_{0}:=$ empty word. Then $w_{0}=(0,0)=1$ in $\mathbf{G}_{1,2}$ and:

$$
\begin{aligned}
w_{n+1} & :=b \cdot w_{n} \cdot(1,0) \cdot w_{n}^{-1} \cdot b^{-1} \\
& =b \cdot(0, \tau(n)) \cdot(1,0) \cdot(0,-\tau(n)) \cdot b^{-1} \\
& =b \cdot(\tau(n+1), 0) \cdot b^{-1} \\
& =(0, \tau(n+1))
\end{aligned}
$$

Difficulty of the word problem in $\mathbf{G}_{1,2}$

$$
\tau=\text { tower function: } \quad \tau(0)=0, \quad \tau(n+1)=2^{\tau(n)} .
$$

Solving the word problem using Britton reductions:

$$
b(k, 0) b^{-1} \rightarrow(0, k) \quad b^{-1}(k, 0) b \rightarrow(0, k)
$$

leads to non-elementary blow-up. Define words w_{n} inductively such that $w_{n}=(0, \tau(n))$ in $\mathbf{G}_{1,2}$ for $n \geq 0$. More precisely, $w_{0}:=$ empty word. Then $w_{0}=(0,0)=1$ in $\mathbf{G}_{1,2}$ and:

$$
\begin{aligned}
w_{n+1} & :=b \cdot w_{n} \cdot(1,0) \cdot w_{n}^{-1} \cdot b^{-1} \\
& =b \cdot(0, \tau(n)) \cdot(1,0) \cdot(0,-\tau(n)) \cdot b^{-1} \\
& =b \cdot(\tau(n+1), 0) \cdot b^{-1} \\
& =(0, \tau(n+1))
\end{aligned}
$$

$\left|w_{n}\right| \in 2^{\Theta(n)}$, but w_{n} is a huge compression for the number $\tau(n)$.

Power circuits

- Write numbers as binary sums $\sum_{i \in I} \alpha_{i} \cdot 2^{p_{i}} \quad\left(\alpha_{i} \in\{-1,+1\}\right)$
- Recursively repeat this for all p_{i}

Myasnikov, Ushakov, Won (2006) in IJAC 2011

$$
\varepsilon(v)=2^{+16-4-1}=2048
$$

- Write numbers as binary sums $\sum_{i \in I} \alpha_{i} \cdot 2^{p_{i}} \quad\left(\alpha_{i} \in\{-1,+1\}\right)$
- Recursively repeat this for all p_{i}

Myasnikov, Ushakov, Won (2006) in IJAC 2011

Power circuits can represent huge numbers

$\varepsilon(M)=65536$

Power circuits can represent huge numbers

$\varepsilon(M)=2^{65536}>$ number of atoms in the universe

$\varepsilon(M)=2^{26556}$ impossible to write down in binary

Power circuits can represent huge numbers

Solving the word problem in $\mathbf{G}_{1,2}$

Proposition (Myasnikov, Ushakov, Won, 2006)

Basic arithmetic operations (comparison, addition, $\left.(x, y) \mapsto x \cdot 2^{y}\right)$ in power circuits can be performed in polynomial time and with only a "small" blow-up.

Theorem (Myasnikov, Ushakov, Won, 2006)

The word problem of $\mathbf{G}_{1,2}$ is in P .

Theorem (Diekert, Laun, Ushakov, STACS 2012)

The word problem of $\mathbf{G}_{1,2}$ is can be solved in $\mathcal{O}\left(n^{3}\right)$.

Difficulty of the conjugacy problem in $\mathbf{G}_{1,2}$

In $\mathbf{B S}_{1,2} \leq \mathbf{G}_{1,2}$ we have (for $m \geq 2$)
$(r, m) \sim_{\mathbf{B S}_{1,2}}(s, q) \Longleftrightarrow m=q$ and $\exists k \in \mathbb{N}: 0 \leq k<m$ such that

$$
\left(2^{m}-1\right) \mid\left(r \cdot 2^{k}-s\right)
$$

\rightsquigarrow need to check divisibility in power circuits.

Difficulty of the conjugacy problem in $\mathbf{G}_{1,2}$

In $\mathbf{B S}_{1,2} \leq \mathbf{G}_{1,2}$ we have (for $m \geq 2$)
$(r, m) \sim_{\mathbf{B S}_{1,2}}(s, q) \Longleftrightarrow m=q$ and $\exists k \in \mathbb{N}: 0 \leq k<m$ such that

$$
\left(2^{m}-1\right) \mid\left(r \cdot 2^{k}-s\right)
$$

\rightsquigarrow need to check divisibility in power circuits.

Proposition

There is an exponential time reduction from the divisibility problem in power circuits to the conjugacy problem in $\mathbf{G}_{1,2}$.

Divisibility cannot be reduced to modulo

Modulo is impossible in elementary time: $x=2^{65536}, \lambda=2^{x}$
$\left(2^{\lambda}\right)^{x} \bmod 2^{\lambda}-\lambda-1=$

Divisibility cannot be reduced to modulo

Modulo is impossible in elementary time: $x=2^{65536}, \lambda=2^{x}$

$$
\left(2^{\lambda}\right)^{x} \quad \bmod 2^{\lambda}-\lambda-1=(\lambda+1)^{x}=
$$

Divisibility cannot be reduced to modulo

Modulo is impossible in elementary time: $x=2^{65536}, \lambda=2^{x}$

$$
\left(2^{\lambda}\right)^{x} \bmod 2^{\lambda}-\lambda-1=(\lambda+1)^{x}=\sum_{i=0}^{x}\binom{x}{i} \lambda^{i}=: X
$$

Divisibility cannot be reduced to modulo

Modulo is impossible in elementary time: $x=2^{65536}, \lambda=2^{x}$

$$
\left(2^{\lambda}\right)^{x} \bmod 2^{\lambda}-\lambda-1=(\lambda+1)^{x}=\sum_{i=0}^{x}\binom{x}{i} \lambda^{i}=: X
$$

$$
=\underbrace{X}
$$

impossible to write down in binary or as power circuit since compact representation contains too many 1 s

Divisibility in power circuits

- Divisibility test cannot be done in elementary time by calculating modulo.

Divisibility in power circuits

- Divisibility test cannot be done in elementary time by calculating modulo.
- The trivial algorithm (convert to binary) needs non-elementary time.

Divisibility in power circuits

- Divisibility test cannot be done in elementary time by calculating modulo.
- The trivial algorithm (convert to binary) needs non-elementary time.
- There might be another way to check divisibility.

Divisibility in power circuits

- Divisibility test cannot be done in elementary time by calculating modulo.
- The trivial algorithm (convert to binary) needs non-elementary time.
- There might be another way to check divisibility.
- As markings are sums of vertices, it seems unlikely that divisibility can be tested without knowing the modulo value of the vertices.

Divisibility in power circuits

- Divisibility test cannot be done in elementary time by calculating modulo.
- The trivial algorithm (convert to binary) needs non-elementary time.
- There might be another way to check divisibility.
- As markings are sums of vertices, it seems unlikely that divisibility can be tested without knowing the modulo value of the vertices.

Good news: the conjugacy problem in $\mathbf{G}_{1,2}$ is only difficult for elements in $\mathbf{B S}_{1,2}$.

Solving the conjugacy problem in $\mathbf{G}_{1,2}$

Lemma (Collin's Lemma for HNN extensions)

Let $v, w \in\left\{(0,1),(1,0),(0,-1),(-1,0), b, b^{-1}\right\}^{*}$ be cyclically reduced words (no factor $b(k, 0) b^{-1}$ or $b^{-1}(0, k) b$ in $v v$ and $w w$) such that in v and w occurs at least one letter b or b^{-1}. Then $v \sim w$ if and only if there is a cyclic permutation w^{\prime} of w and some $x \in \mathbf{B S}_{1,2}$ such that $v=x w^{\prime} x^{-1}$.

Solving the conjugacy problem in $\mathbf{G}_{1,2}$

Lemma (Collin's Lemma for HNN extensions)

Let $v, w \in\left\{(0,1),(1,0),(0,-1),(-1,0), b, b^{-1}\right\}^{*}$ be cyclically reduced words (no factor $b(k, 0) b^{-1}$ or $b^{-1}(0, k) b$ in $v v$ and $w w$) such that in v and w occurs at least one letter b or b^{-1}. Then $v \sim w$ if and only if there is a cyclic permutation w^{\prime} of w and some $x \in \mathbf{B S}_{1,2}$ such that $v=x w^{\prime} x^{-1}$.

- There are only linearly many candidates for w^{\prime}.

Solving the conjugacy problem in $\mathbf{G}_{1,2}$

Lemma (Collin's Lemma for HNN extensions)

Let $v, w \in\left\{(0,1),(1,0),(0,-1),(-1,0), b, b^{-1}\right\}^{*}$ be cyclically reduced words (no factor $b(k, 0) b^{-1}$ or $b^{-1}(0, k) b$ in $v v$ and $w w$) such that in v and w occurs at least one letter b or b^{-1}. Then $v \sim w$ if and only if there is a cyclic permutation w^{\prime} of w and some $x \in \mathbf{B S}_{1,2}$ such that $v=x w^{\prime} x^{-1}$.

- There are only linearly many candidates for w^{\prime}.
- If $v, w \notin \mathbf{B S}_{1,2}$, then some $x \in \mathbf{B S}_{1,2}$ with $v=x w^{\prime} x^{-1}$ can be determined using only division by powers of 2 .
\rightsquigarrow such x can be determined in polynomial time.

Solving the conjugacy problem in $\mathbf{G}_{1,2}$

Lemma (Collin's Lemma for HNN extensions)

Let $v, w \in\left\{(0,1),(1,0),(0,-1),(-1,0), b, b^{-1}\right\}^{*}$ be cyclically reduced words (no factor $b(k, 0) b^{-1}$ or $b^{-1}(0, k) b$ in $v v$ and $w w$) such that in v and w occurs at least one letter b or b^{-1}. Then $v \sim w$ if and only if there is a cyclic permutation w^{\prime} of w and some $x \in \mathbf{B S}_{1,2}$ such that $v=x w^{\prime} x^{-1}$.

- There are only linearly many candidates for w^{\prime}.
- If $v, w \notin \mathbf{B S}_{1,2}$, then some $x \in \mathbf{B S}_{1,2}$ with $v=x w^{\prime} x^{-1}$ can be determined using only division by powers of 2 . \rightsquigarrow such x can be determined in polynomial time.

Proposition

The conjugacy problem of $\mathbf{G}_{1,2}$ for elements $v, w \notin \mathbf{B S}_{1,2}$ is in P .

Solving the conjugacy problem in $\mathbf{G}_{1,2}$

Theorem

The set $\left\{a, a^{-1}, b, b^{-1}\right\}^{*} \backslash \mathbf{B S}_{1,2}$ is strongly generic in $\left\{a, a^{-1}, b, b^{-1}\right\}^{*}$.

Proof.

- By random walk techniques.
- Uses the fact that Britton reductions can be described by Dyck words.

Corollary

There is an algorithm to decide the conjugacy problem of $\mathbf{G}_{1,2}$. It runs in polynomial time on a strongly generic subset of inputs.

Conclusion

- The conjugacy problem of $\mathbf{G}_{1,2}$ is strongly generically in P.
- Our algorithm has non-elementary average case complexity.

Conclusion

- The conjugacy problem of $\mathbf{G}_{1,2}$ is strongly generically in P.
- Our algorithm has non-elementary average case complexity.

Conjecture

The conjugacy problem in $\mathbf{G}_{1,2}$ is not solvable in elementary time on average.

Conclusion

- The conjugacy problem of $\mathbf{G}_{1,2}$ is strongly generically in P.
- Our algorithm has non-elementary average case complexity.

Conjecture

The conjugacy problem in $\mathbf{G}_{1,2}$ is not solvable in elementary time on average.

- Lower bounds for the divisibility problem in power circuits?

Conclusion

- The conjugacy problem of $\mathbf{G}_{1,2}$ is strongly generically in P.
- Our algorithm has non-elementary average case complexity.

Conjecture

The conjugacy problem in $\mathbf{G}_{1,2}$ is not solvable in elementary time on average.

- Lower bounds for the divisibility problem in power circuits?
- Complexity of the conjugacy problem of $\mathbf{B S}_{p, q}=\left\langle a, t \mid t a^{p} t^{-1}=a^{q}\right\rangle$ for $|p|,|q|>1$?

Conjecture

The conjugacy problem in $\mathbf{B S}_{p, q}$ is in LOGSPACE.

Conclusion

- The conjugacy problem of $\mathbf{G}_{1,2}$ is strongly generically in P.
- Our algorithm has non-elementary average case complexity.

Conjecture

The conjugacy problem in $\mathbf{G}_{1,2}$ is not solvable in elementary time on average.

- Lower bounds for the divisibility problem in power circuits?
- Complexity of the conjugacy problem of $\mathbf{B S}_{p, q}=\left\langle a, t \mid t a^{p} t^{-1}=a^{q}\right\rangle$ for $|p|,|q|>1$?

Conjecture

The conjugacy problem in $\mathbf{B S}_{p, q}$ is in LOGSPACE.

Thank you!

