TC ${ }^{0}$ circuits for algorithmic problems in nilpotent groups

Alexei Myasnikov ${ }^{1} \quad$ Armin Weiß 2

${ }^{1}$ Stevens Institute of Technology, USA
${ }^{2}$ Universität Stuttgart, Germany
Aalborg, August 21, 2017

Dehn's algorithmic problems

Let G be a group generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

$$
\begin{array}{lll}
\text { Word problem: } & \begin{array}{l}
\text { Given: } \\
\text { Question: }
\end{array} & \text { Is } w=\Sigma^{*} \\
\text { in G? }
\end{array}
$$

Subgroup membership problem:
Given: $\quad v, w_{1}, \ldots, w_{n} \in \Sigma^{*}$.
Question: $\quad v \in\left\langle w_{1}, \ldots, w_{n}\right\rangle$?

Dehn's algorithmic problems

Let G be a group generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

$$
\begin{array}{lll}
\text { Word problem: } & \begin{array}{l}
\text { Given: } \\
\text { Question: }
\end{array} & \text { Is } w=\Sigma^{*} \\
& \text { in } G ?
\end{array}
$$

Subgroup membership problem:
Given: $\quad v, w_{1}, \ldots, w_{n} \in \Sigma^{*}$.
Question: $\quad v \in\left\langle w_{1}, \ldots, w_{n}\right\rangle$?

Theorem (Robinson, 1993)

The word problem of nilpotent groups is in TC^{0}.

Dehn's algorithmic problems

Let G be a group generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

> Word problem:

Given: $\quad w \in \Sigma^{*}$
Question: Is $w=1$ in G ?

Subgroup membership problem:
Given: $\quad v, w_{1}, \ldots, w_{n} \in \Sigma^{*}$.
Question: $\quad v \in\left\langle w_{1}, \ldots, w_{n}\right\rangle$?

Theorem (Robinson, 1993)

The word problem of nilpotent groups is in TC^{0}.

Theorem (Macdonald, Myasnikov, Nikolaev, Vassileva, 2015)

The subgroup membership problem of nilpotent groups is in LOGSPACE.

Circuit Complexity

$\mathrm{TC}^{0}=$ solved by constant depth, polynomial size circuits with unbounded fan-in \neg, \wedge, \vee, and majority gates.

$$
\operatorname{Maj}(w)=1 \Longleftrightarrow|w|_{1} \geq|w|_{0} \text { for } w \in\{0,1\}^{*}
$$

Circuit Complexity

$\mathrm{TC}^{0}=$ solved by constant depth, polynomial size circuits with unbounded fan-in \neg, \wedge, \vee, and majority gates.

$$
\operatorname{Maj}(w)=1 \Longleftrightarrow|w|_{1} \geq|w|_{0} \text { for } w \in\{0,1\}^{*}
$$

$$
\mathrm{AC}^{0} \varsubsetneqq \mathrm{TC}^{0} \subseteq \mathrm{NC}^{1} \subseteq \mathrm{LOGSPACE} \subseteq \mathrm{NC}^{2} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P}
$$

Circuit Complexity

$\mathrm{TC}^{0}=$ solved by constant depth, polynomial size circuits with unbounded fan-in \neg, \wedge, \vee, and majority gates.

$$
\operatorname{Maj}(w)=1 \Longleftrightarrow|w|_{1} \geq|w|_{0} \text { for } w \in\{0,1\}^{*}
$$

$$
\mathrm{AC}^{0} \varsubsetneqq \mathrm{TC}^{0} \subseteq \mathrm{NC}^{1} \subseteq \mathrm{LOGSPACE} \subseteq \mathrm{NC}^{2} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P}
$$

Arithmetic problems in TC^{0} :

- Iterated Addition (input: n-bit numbers r_{1}, \ldots, r_{n}, compute $\sum_{i=1}^{n} r_{i}$)
- Iterated Multiplication
- Integer Division (Hesse 2001)

Word problem of \mathbb{Z}

The word problem of \mathbb{Z} with generators $\{+1,-1\}$ is in TC^{0}.

Word problem of \mathbb{Z}
The word problem of \mathbb{Z} with generators $\{+1,-1\}$ is in TC^{0}.
Encode -1 by 0 and 1 by 1 .

Word problem of \mathbb{Z}

The word problem of \mathbb{Z} with generators $\{+1,-1\}$ is in TC^{0}.
Encode -1 by 0 and 1 by 1 . Let $w \in\{0,1\}^{*}$,

$$
\begin{aligned}
w \text { represents } 0 \text { in } \mathbb{Z} & \Longleftrightarrow|w|_{1}=|w|_{0} \\
& \Longleftrightarrow \operatorname{Maj}(w) \wedge \operatorname{Maj}(\neg w)
\end{aligned}
$$

Word problem of \mathbb{Z}
The word problem of \mathbb{Z} with generators $\{+1,-1\}$ is in TC^{0}.
Encode -1 by 0 and 1 by 1 . Let $w \in\{0,1\}^{*}$, w represents 0 in $\mathbb{Z} \Longleftrightarrow|w|_{1}=|w|_{0}$

$$
\Longleftrightarrow \operatorname{Maj}(w) \wedge \operatorname{Maj}(\neg w)
$$

Nilpotent groups

Definition

A group G is nilpotent of class c if

$$
G=G_{1}>G_{2}>\cdots G_{c}>G_{c+1}=\{1\}
$$

where $G_{i+1}=\left[G_{i}, G\right]=\left\langle x^{-1} g^{-1} x g\right.$ for $\left.x \in G_{i}, g \in G\right\rangle$.

Nilpotent groups

Definition

A group G is nilpotent of class c if

$$
G=G_{1}>G_{2}>\cdots G_{c}>G_{c+1}=\{1\}
$$

where $G_{i+1}=\left[G_{i}, G\right]=\left\langle x^{-1} g^{-1} x g\right.$ for $\left.x \in G_{i}, g \in G\right\rangle$.

Examples:

- abelian groups (nilpotent of class 1)

Nilpotent groups

Definition

A group G is nilpotent of class c if

$$
G=G_{1}>G_{2}>\cdots G_{c}>G_{c+1}=\{1\}
$$

where $G_{i+1}=\left[G_{i}, G\right]=\left\langle x^{-1} g^{-1} x g\right.$ for $\left.x \in G_{i}, g \in G\right\rangle$.

Examples:

- abelian groups (nilpotent of class 1)
- finite p-groups

Nilpotent groups

Definition

A group G is nilpotent of class c if

$$
G=G_{1}>G_{2}>\cdots G_{c}>G_{c+1}=\{1\}
$$

where $G_{i+1}=\left[G_{i}, G\right]=\left\langle x^{-1} g^{-1} x g\right.$ for $\left.x \in G_{i}, g \in G\right\rangle$.

Examples:

- abelian groups (nilpotent of class 1)
- finite p-groups
- unitriangular matrices $U T_{n}(\mathbb{Z})$
(upper triangular and diagonal entries 1)

Nilpotent groups

Definition

A group G is nilpotent of class c if

$$
G=G_{1}>G_{2}>\cdots G_{c}>G_{c+1}=\{1\}
$$

where $G_{i+1}=\left[G_{i}, G\right]=\left\langle x^{-1} g^{-1} x g\right.$ for $\left.x \in G_{i}, g \in G\right\rangle$.

Examples:

- abelian groups (nilpotent of class 1)
- finite p-groups
- unitriangular matrices $U T_{n}(\mathbb{Z})$
(upper triangular and diagonal entries 1)
- free nilpotent groups
$F_{k, c}=\left\langle a_{1}, \ldots, a_{k}\right|\left[x_{1}, \ldots, x_{c+1}\right]=1$ for $\left.x_{1}, \ldots, x_{c+1} \in F_{k, c}\right\rangle$ where $\left(\left[x_{1}, \ldots, x_{c+1}\right]=\left[\left[x_{1}, \ldots, x_{c}\right], x_{c+1}\right]\right)$

Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}
$$

with $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m}$ and

$$
a_{i} a_{j} \equiv a_{j} a_{i} \quad \bmod \left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle .
$$

Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}
$$

with $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m}$ and

$$
a_{i} a_{j} \equiv a_{j} a_{i} \quad \bmod \left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle
$$

Example

$F_{2,2}=\left\langle a_{1}, a_{2}\right|[[x, y], z]=1$ for $\left.x, y, z \in F_{2,2}\right\rangle$

- $\left(a_{1}, a_{2}\right)$ is not a Mal'cev basis since $a_{2} a_{1}$ cannot be written as $a_{1}^{x} a_{2}^{y}$

Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}
$$

with $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m}$ and

$$
a_{i} a_{j} \equiv a_{j} a_{i} \quad \bmod \left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle .
$$

Example

$F_{2,2}=\left\langle a_{1}, a_{2}\right|[[x, y], z]=1$ for $\left.x, y, z \in F_{2,2}\right\rangle$

- $\left(a_{1}, a_{2}\right)$ is not a Mal'cev basis since $a_{2} a_{1}$ cannot be written as $a_{1}^{x} a_{2}^{y}$
- $\left(a_{1}, a_{2},\left[a_{2}, a_{1}\right]\right)$ is a Mal'cev basis:

Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}
$$

with $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m}$ and

$$
a_{i} a_{j} \equiv a_{j} a_{i} \quad \bmod \left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle .
$$

Example

$F_{2,2}=\left\langle a_{1}, a_{2}\right|[[x, y], z]=1$ for $\left.x, y, z \in F_{2,2}\right\rangle$

- $\left(a_{1}, a_{2}\right)$ is not a Mal'cev basis since $a_{2} a_{1}$ cannot be written as $a_{1}^{x} a_{2}^{y}$
- $\left(a_{1}, a_{2},\left[a_{2}, a_{1}\right]\right)$ is a Mal'cev basis:

$$
a_{2} a_{1} a_{2} a_{1}=
$$

Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}
$$

with $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m}$ and

$$
a_{i} a_{j} \equiv a_{j} a_{i} \quad \bmod \left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle .
$$

Example

$F_{2,2}=\left\langle a_{1}, a_{2}\right|[[x, y], z]=1$ for $\left.x, y, z \in F_{2,2}\right\rangle$

- $\left(a_{1}, a_{2}\right)$ is not a Mal'cev basis since $a_{2} a_{1}$ cannot be written as $a_{1}^{x} a_{2}^{y}$
- $\left(a_{1}, a_{2},\left[a_{2}, a_{1}\right]\right)$ is a Mal'cev basis:

$$
a_{2} a_{1} a_{2} a_{1}=
$$

Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}
$$

with $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m}$ and

$$
a_{i} a_{j} \equiv a_{j} a_{i} \quad \bmod \left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle .
$$

Example

$F_{2,2}=\left\langle a_{1}, a_{2}\right|[[x, y], z]=1$ for $\left.x, y, z \in F_{2,2}\right\rangle$

- $\left(a_{1}, a_{2}\right)$ is not a Mal'cev basis since $a_{2} a_{1}$ cannot be written as $a_{1}^{x} a_{2}^{y}$
- $\left(a_{1}, a_{2},\left[a_{2}, a_{1}\right]\right)$ is a Mal'cev basis:

$$
a_{2} a_{1} a_{2} a_{1}=a_{1} a_{2}\left[a_{2}, a_{1}\right] a_{2} a_{1}
$$

Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}
$$

with $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m}$ and

$$
a_{i} a_{j} \equiv a_{j} a_{i} \quad \bmod \left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle .
$$

Example

$F_{2,2}=\left\langle a_{1}, a_{2}\right|[[x, y], z]=1$ for $\left.x, y, z \in F_{2,2}\right\rangle$

- $\left(a_{1}, a_{2}\right)$ is not a Mal'cev basis since $a_{2} a_{1}$ cannot be written as $a_{1}^{x} a_{2}^{y}$
- $\left(a_{1}, a_{2},\left[a_{2}, a_{1}\right]\right)$ is a Mal'cev basis:

$$
a_{2} a_{1} a_{2} a_{1}=a_{1} a_{2} a_{2} a_{1}\left[a_{2}, a_{1}\right]
$$

Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}
$$

with $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m}$ and

$$
a_{i} a_{j} \equiv a_{j} a_{i} \quad \bmod \left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle .
$$

Example

$F_{2,2}=\left\langle a_{1}, a_{2}\right|[[x, y], z]=1$ for $\left.x, y, z \in F_{2,2}\right\rangle$

- $\left(a_{1}, a_{2}\right)$ is not a Mal'cev basis since $a_{2} a_{1}$ cannot be written as $a_{1}^{x} a_{2}^{y}$
- $\left(a_{1}, a_{2},\left[a_{2}, a_{1}\right]\right)$ is a Mal'cev basis:

$$
a_{2} a_{1} a_{2} a_{1}=a_{1} a_{2} a_{2} a_{1}\left[a_{2}, a_{1}\right]
$$

Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}
$$

with $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m}$ and

$$
a_{i} a_{j} \equiv a_{j} a_{i} \quad \bmod \left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle .
$$

Example

$F_{2,2}=\left\langle a_{1}, a_{2}\right|[[x, y], z]=1$ for $\left.x, y, z \in F_{2,2}\right\rangle$

- $\left(a_{1}, a_{2}\right)$ is not a Mal'cev basis since $a_{2} a_{1}$ cannot be written as $a_{1}^{x} a_{2}^{y}$
- $\left(a_{1}, a_{2},\left[a_{2}, a_{1}\right]\right)$ is a Mal'cev basis:

$$
a_{2} a_{1} a_{2} a_{1}=a_{1} a_{2}^{2} a_{1}\left[a_{2}, a_{1}\right]
$$

Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}
$$

with $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m}$ and

$$
a_{i} a_{j} \equiv a_{j} a_{i} \quad \bmod \left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle .
$$

Example

$F_{2,2}=\left\langle a_{1}, a_{2}\right|[[x, y], z]=1$ for $\left.x, y, z \in F_{2,2}\right\rangle$

- $\left(a_{1}, a_{2}\right)$ is not a Mal'cev basis since $a_{2} a_{1}$ cannot be written as $a_{1}^{x} a_{2}^{y}$
- $\left(a_{1}, a_{2},\left[a_{2}, a_{1}\right]\right)$ is a Mal'cev basis:

$$
a_{2} a_{1} a_{2} a_{1}=a_{1} a_{1} a_{2}^{2}\left[a_{2}, a_{1}\right]^{2}\left[a_{2}, a_{1}\right]
$$

Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}
$$

with $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m}$ and

$$
a_{i} a_{j} \equiv a_{j} a_{i} \quad \bmod \left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle .
$$

Example

$F_{2,2}=\left\langle a_{1}, a_{2}\right|[[x, y], z]=1$ for $\left.x, y, z \in F_{2,2}\right\rangle$

- $\left(a_{1}, a_{2}\right)$ is not a Mal'cev basis since $a_{2} a_{1}$ cannot be written as $a_{1}^{x} a_{2}^{y}$
- ($\left.a_{1}, a_{2},\left[a_{2}, a_{1}\right]\right)$ is a Mal'cev basis:

$$
a_{2} a_{1} a_{2} a_{1}=a_{1}^{2} a_{2}^{2}\left[a_{2}, a_{1}\right]^{3}
$$

Mal'cev coordinates

Every (torsion-free) nilpotent group G has a Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}
$$

with $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{m}$ and

$$
a_{i} a_{j} \equiv a_{j} a_{i} \quad \bmod \left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle
$$

Example

$F_{2,2}=\left\langle a_{1}, a_{2}\right|[[x, y], z]=1$ for $\left.x, y, z \in F_{2,2}\right\rangle$

- $\left(a_{1}, a_{2}\right)$ is not a Mal'cev basis since $a_{2} a_{1}$ cannot be written as $a_{1}^{x} a_{2}^{y}$
- $\left(a_{1}, a_{2},\left[a_{2}, a_{1}\right]\right)$ is a Mal'cev basis:

$$
a_{2} a_{1} a_{2} a_{1}=a_{1}^{2} a_{2}^{2}\left[a_{2}, a_{1}\right]^{3}
$$

- $F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{2}, a_{1}\right]=a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=1\right\rangle=U T_{3}(\mathbb{Z})$

Mal'cev coordinates

The products of two elements can be written in the same way

$$
a_{1}^{x_{1}} \cdots a_{m}^{x_{m}} \cdot a_{1}^{y_{1}} \cdots a_{m}^{y_{m}}=a_{1}^{p_{1}} \cdots a_{m}^{p_{m}}
$$

Mal'cev coordinates

The products of two elements can be written in the same way

$$
a_{1}^{x_{1}} \cdots a_{m}^{x_{m}} \cdot a_{1}^{y_{1}} \cdots a_{m}^{y_{m}}=a_{1}^{p_{1}} \cdots a_{m}^{p_{m}}
$$

The exponents p_{1}, \ldots, p_{m} are functions of x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{m}

Mal'cev coordinates

The products of two elements and powers can be written in the same way

$$
\begin{aligned}
a_{1}^{x_{1}} \cdots a_{m}^{x_{m}} \cdot a_{1}^{y_{1}} \cdots a_{m}^{y_{m}} & =a_{1}^{p_{1}} \cdots a_{m}^{p_{m}} \\
\left(a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}\right)^{z} & =a_{1}^{q_{1}} \cdots a_{m}^{q_{m}} .
\end{aligned}
$$

The exponents p_{1}, \ldots, p_{m} (resp. q_{1}, \ldots, q_{m}) are functions of x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{m} (resp. x_{1}, \ldots, x_{m} and z).

Mal'cev coordinates

The products of two elements and powers can be written in the same way

$$
\begin{aligned}
a_{1}^{x_{1}} \cdots a_{m}^{x_{m}} \cdot a_{1}^{y_{1}} \cdots a_{m}^{y_{m}} & =a_{1}^{p_{1}} \cdots a_{m}^{p_{m}} \\
\left(a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}\right)^{z} & =a_{1}^{q_{1}} \cdots a_{m}^{q_{m}} .
\end{aligned}
$$

The exponents p_{1}, \ldots, p_{m} (resp. q_{1}, \ldots, q_{m}) are functions of x_{1}, \ldots, x_{m} and $y_{1}, \ldots, y_{m}\left(\right.$ resp. x_{1}, \ldots, x_{m} and $\left.z\right)$.

Fact

$$
p_{1}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right)=x_{1}+y_{1}
$$

Mal'cev coordinates

The products of two elements and powers can be written in the same way

$$
\begin{aligned}
a_{1}^{x_{1}} \cdots a_{m}^{x_{m}} \cdot a_{1}^{y_{1}} \cdots a_{m}^{y_{m}} & =a_{1}^{p_{1}} \cdots a_{m}^{p_{m}} \\
\left(a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}\right)^{z} & =a_{1}^{q_{1}} \cdots a_{m}^{q_{m}} .
\end{aligned}
$$

The exponents p_{1}, \ldots, p_{m} (resp. q_{1}, \ldots, q_{m}) are functions of x_{1}, \ldots, x_{m} and $y_{1}, \ldots, y_{m}\left(\right.$ resp. x_{1}, \ldots, x_{m} and $\left.z\right)$.

Fact

$$
p_{1}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right)=x_{1}+y_{1}
$$

Theorem (P. Hall, 1957)

If G is torsion-free, then

$$
\begin{aligned}
& p_{1}, \ldots, p_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right], \\
& q_{1}, \ldots, q_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{m}, z\right] .
\end{aligned}
$$

Mal'cev coordinates

The products of two elements and powers can be written in the same way

$$
\begin{aligned}
a_{1}^{x_{1}} \cdots a_{m}^{x_{m}} \cdot a_{1}^{y_{1}} \cdots a_{m}^{y_{m}} & =a_{1}^{p_{1}} \cdots a_{m}^{p_{m}} \\
\left(a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}\right)^{z} & =a_{1}^{q_{1}} \cdots a_{m}^{q_{m}} .
\end{aligned}
$$

The exponents p_{1}, \ldots, p_{m} (resp. q_{1}, \ldots, q_{m}) are functions of x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{m} (resp. x_{1}, \ldots, x_{m} and z).

Example

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{2}, a_{1}\right]=a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=1\right\rangle$

$$
a_{1}^{x_{1}} a_{2}^{x_{2}} a_{3}^{x_{3}} \cdot a_{1}^{y_{1}} a_{2}^{y_{2}} a_{3}^{y_{3}}=a_{1}^{x_{1}+y_{1}} a_{2}^{x_{2}+y_{2}} a_{3}^{x_{3}+y_{3}+y_{1} x_{2}}
$$

Mal'cev coordinates

The products of two elements and powers can be written in the same way

$$
\begin{aligned}
a_{1}^{x_{1}} \cdots a_{m}^{x_{m}} \cdot a_{1}^{y_{1}} \cdots a_{m}^{y_{m}} & =a_{1}^{p_{1}} \cdots a_{m}^{p_{m}} \\
\left(a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}\right)^{z} & =a_{1}^{q_{1}} \cdots a_{m}^{q_{m}} .
\end{aligned}
$$

The exponents p_{1}, \ldots, p_{m} (resp. q_{1}, \ldots, q_{m}) are functions of x_{1}, \ldots, x_{m} and $y_{1}, \ldots, y_{m}\left(\right.$ resp. x_{1}, \ldots, x_{m} and $\left.z\right)$.

Example

$$
\begin{aligned}
G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3}\right|\left[a_{2}, a_{1}\right]=a_{3}, & {\left.\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=1\right\rangle } \\
a_{1}^{x_{1}} a_{2}^{x_{2}} a_{3}^{x_{3}} \cdot a_{1}^{y_{1}} a_{2}^{y_{2}} a_{3}^{y_{3}} & =a_{1}^{x_{1}+y_{1}} a_{2}^{x_{2}+y_{2}} a_{3}^{x_{3}+y_{3}+y_{1} x_{2}} \\
\left(a_{1}^{x_{1}} a_{2}^{x_{2}} a_{3}^{x_{3}}\right)^{z} & =a_{1}^{z x_{1}} a_{2}^{z x_{2}} a_{3}^{z x_{3}+\binom{z-1}{2} x_{1} x_{2}} .
\end{aligned}
$$

Groups as inputs

$\mathcal{N}_{c, r}=\{r$-generated nilpotent groups of class at most $c\}$.

Groups as inputs

$\mathcal{N}_{c, r}=\{r$-generated nilpotent groups of class at most $c\}$.
Every $G \in \mathcal{N}_{c, r}$ is a quotient of the free nilpotent group $F_{c, r}$:

$$
G=F_{c, r} / N
$$

for some normal subgroup $N \leq F_{c, r}$.

Groups as inputs

$\mathcal{N}_{c, r}=\{r$-generated nilpotent groups of class at most $c\}$.
Every $G \in \mathcal{N}_{c, r}$ is a quotient of the free nilpotent group $F_{c, r}$:

$$
G=F_{c, r} / N
$$

for some normal subgroup $N \leq F_{c, r}$.
Represent $G \in \mathcal{N}_{c, r}$ by a (nice) generating set of N.

Groups as inputs

$\mathcal{N}_{c, r}=\{r$-generated nilpotent groups of class at most $c\}$.
Every $G \in \mathcal{N}_{c, r}$ is a quotient of the free nilpotent group $F_{c, r}$:

$$
G=F_{c, r} / N
$$

for some normal subgroup $N \leq F_{c, r}$.
Represent $G \in \mathcal{N}_{c, r}$ by a (nice) generating set of N.
If $\left(a_{1}, \ldots, a_{m}\right)$ is a Mal'cev basis of $F_{c, r}$, it is also a Mal'cev basis of G.

Words with Binary Exponents

Usually: group elements represented as words

Words with Binary Exponents

Usually: group elements represented as words
Let Σ generate G. A word with binary exponents is

- a sequence w_{1}, \ldots, w_{n} with $w_{i} \in \Sigma$
- together with x_{1}, \ldots, x_{n} with $x_{i} \in \mathbb{Z}$ encoded in binary.

It represents

$$
w=w_{1}^{x_{1}} \cdots w_{n}^{x_{n}} .
$$

Words with Binary Exponents

Usually: group elements represented as words
Let Σ generate G. A word with binary exponents is

- a sequence w_{1}, \ldots, w_{n} with $w_{i} \in \Sigma$
- together with x_{1}, \ldots, x_{n} with $x_{i} \in \mathbb{Z}$ encoded in binary.

It represents

$$
w=w_{1}^{x_{1}} \cdots w_{n}^{x_{n}} .
$$

Example

Write
$a_{1}^{1000} a_{3} a_{2}^{100} a_{1}^{4}$
instead of

Words with Binary Exponents

Usually: group elements represented as words
Let Σ generate G. A word with binary exponents is

- a sequence w_{1}, \ldots, w_{n} with $w_{i} \in \Sigma$
- together with x_{1}, \ldots, x_{n} with $x_{i} \in \mathbb{Z}$ encoded in binary.

It represents

$$
w=w_{1}^{x_{1}} \cdots w_{n}^{x_{n}} .
$$

Example

Write instead of

$$
a_{1}^{1000} a_{3} a_{2}^{100} a_{1}^{4}
$$

$$
\underbrace{a_{1} \cdots a_{1}}_{1000 \text { times }} a_{3} \underbrace{a_{2} \cdots a_{2}}_{100 \text { times }} a_{1} a_{1} a_{1} a_{1} .
$$

Fact

In $\mathcal{N}_{c, r}$ groups every word of length n can be written as a word with binary exponents using $\mathcal{O}(\log n)$ bits.

Theorem

Let $c, r \geq 1$ be fixed. Let $\left(a_{1}, \ldots, a_{m}\right)$ be the standard Mal'cev basis of $F_{c, r}$. The following problem is in TC^{0} :
Input: $G \in \mathcal{N}_{c, r}$ and $w=w_{1}^{\chi_{1}} \cdots w_{n}^{\chi_{n}}$ (with binary exponents),
Find: $y_{1}, \ldots, y_{m} \in \mathbb{Z}$ (in binary) such that $w=a_{1}^{y_{1}} \cdots a_{m}^{y_{m}}$.

Word Problem

Theorem

Let $c, r \geq 1$ be fixed. Let $\left(a_{1}, \ldots, a_{m}\right)$ be the standard Mal'cev basis of $F_{c, r}$. The following problem is in TC^{0} :
Input: $G \in \mathcal{N}_{c, r}$ and $w=w_{1}^{\chi_{1}} \cdots w_{n}^{\chi_{n}}$ (with binary exponents),
Find: $y_{1}, \ldots, y_{m} \in \mathbb{Z}$ (in binary) such that $w=a_{1}^{y_{1}} \cdots a_{m}^{y_{m}}$.
For unary inputs and fixed G this is due to Robinson 1993.

Word Problem

Theorem

Let $c, r \geq 1$ be fixed. Let $\left(a_{1}, \ldots, a_{m}\right)$ be the standard Mal'cev basis of $F_{c, r}$. The following problem is in TC^{0} :
Input: $G \in \mathcal{N}_{c, r}$ and $w=w_{1}^{\chi_{1}} \cdots w_{n}^{\chi_{n}}$ (with binary exponents),
Find: $y_{1}, \ldots, y_{m} \in \mathbb{Z}$ (in binary) such that $w=a_{1}^{y_{1}} \cdots a_{m}^{y_{m}}$.
For unary inputs and fixed G this is due to Robinson 1993.

Corollary

Let $c, r \geq 1$ be fixed. The uniform, binary word problem for groups in $\mathcal{N}_{c, r}$ is TC^{0}-complete (input as in Theorem 1).

Example

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{2}, a_{1}\right]=a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=1\right\rangle$
$w=a_{3} a_{1}^{13} a_{2}^{10} a_{1}^{5} a_{2} a_{1}^{10} a_{1}^{-20}$

Example

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{2}, a_{1}\right]=a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=1\right\rangle$
$w=a_{3} a_{1}^{13} a_{2}^{10} a_{1}^{5} a_{2} a_{1}^{10} a_{1}^{-20}$
Aim move a_{1} to the left.

Example

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{2}, a_{1}\right]=a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=1\right\rangle$
$w=a_{3} a_{1}^{13} a_{2}^{10} a_{1}^{5} a_{2} a_{1}^{10} a_{1}^{-20}$
Aim move a_{1} to the left.
Substitution rules:

$$
a_{2}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{2}^{x} a_{3}^{x y}
$$

$$
a_{3}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{3}^{x}
$$

Example

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{2}, a_{1}\right]=a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=1\right\rangle$
$w=a_{3} a_{1}^{13} a_{2}^{10} a_{1}^{5} a_{2} a_{1}^{10} a_{1}^{-20}$
Aim move a_{1} to the left.
Substitution rules:

$$
a_{2}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{2}^{x} a_{3}^{x y}
$$

$$
a_{3}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{3}^{x}
$$

$$
w=\quad a_{3} \quad a_{1}^{13} \quad a_{2}^{10} \quad a_{1}^{5} \quad a_{2} \quad a_{1}^{10} \quad a_{1}^{-20}
$$

Example

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{2}, a_{1}\right]=a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=1\right\rangle$
$w=a_{3} a_{1}^{13} a_{2}^{10} a_{1}^{5} a_{2} a_{1}^{10} a_{1}^{-20}$
Aim move a_{1} to the left.
Substitution rules:

$$
a_{2}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{2}^{x} a_{3}^{x y}
$$

$$
a_{3}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{3}^{x}
$$

$$
w=\quad \begin{array}{lllllll}
\\
w & a_{1}^{13} & a_{2}^{10} & a_{1}^{5} & a_{2} & a_{1}^{10} & a_{1}^{-20}
\end{array}
$$

Example

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{2}, a_{1}\right]=a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=1\right\rangle$
$w=a_{3} a_{1}^{13} a_{2}^{10} a_{1}^{5} a_{2} a_{1}^{10} a_{1}^{-20}$
Aim move a_{1} to the left.
Substitution rules:

$$
a_{2}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{2}^{x} a_{3}^{x y}
$$

$$
a_{3}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{3}^{x}
$$

$$
w=\quad a_{3} \quad a_{1}^{13} \quad a_{2}^{10} \quad a_{1}^{5} \quad a_{2} \quad a_{1}^{10} \quad a_{1}^{-20}
$$

$$
=a_{1}^{8}
$$

Example

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{2}, a_{1}\right]=a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=1\right\rangle$
$w=a_{3} a_{1}^{13} a_{2}^{10} a_{1}^{5} a_{2} a_{1}^{10} a_{1}^{-20}$
Aim move a_{1} to the left.
Substitution rules:
$a_{2}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{2}^{x} a_{3}^{x y}$
$a_{3}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{3}^{x}$

$$
\begin{aligned}
w & =\underbrace{a_{3}}_{a_{1}^{8}} a_{1}^{13} \underbrace{a_{2}^{10}}_{a_{1}^{-5}} a_{1}^{5} \underbrace{a_{2}}_{a_{1}^{-10}} a_{1}^{10} a_{1}^{-20} \\
& =a_{1}^{8}
\end{aligned}
$$

Example

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{2}, a_{1}\right]=a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=1\right\rangle$
$w=a_{3} a_{1}^{13} a_{2}^{10} a_{1}^{5} a_{2} a_{1}^{10} a_{1}^{-20}$
Aim move a_{1} to the left.
Substitution rules:

$$
a_{2}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{2}^{x} a_{3}^{x y}
$$

$$
a_{3}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{3}^{x}
$$

$$
\begin{aligned}
w & =\underbrace{a_{3}}_{a_{1}^{8}} a_{a_{1}^{-5}}^{a_{2}^{13}} a_{a_{1}^{-10}}^{a_{1}^{5}} a_{1}^{a_{2}} a_{1}^{-20} \\
& =a_{1}^{8} a_{3}
\end{aligned}
$$

Example

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{2}, a_{1}\right]=a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=1\right\rangle$
$w=a_{3} a_{1}^{13} a_{2}^{10} a_{1}^{5} a_{2} a_{1}^{10} a_{1}^{-20}$
Aim move a_{1} to the left.
Substitution rules:

$$
a_{2}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{2}^{x} a_{3}^{x y} \quad a_{3}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{3}^{x}
$$

$$
w=\quad a_{3} \quad a_{1}^{13} \quad a_{2}^{10} \quad a_{1}^{5} \quad a_{2} \quad a_{1}^{10} \quad a_{1}^{-20}
$$

$$
=a_{1}^{8} \quad a_{3} \quad a_{2}^{10} a_{3}^{-50} \quad a_{2} a_{3}^{-10}
$$

$$
=a_{1}^{8} a_{2}^{11} a_{3}^{-59}
$$

Example

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{2}, a_{1}\right]=a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=1\right\rangle$
$w=a_{3} a_{1}^{13} a_{2}^{10} a_{1}^{5} a_{2} a_{1}^{10} a_{1}^{-20}$
Aim move a_{1} to the left.
Substitution rules:

$$
a_{2}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{2}^{x} a_{3}^{x y} \quad a_{3}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{3}^{x}
$$

$$
w=\quad a_{3} \quad a_{1}^{13} \quad a_{2}^{10} \quad a_{1}^{5} \quad a_{2} \quad a_{1}^{10} \quad a_{1}^{-20}
$$

$$
=a_{1}^{8} \quad a_{3} \quad a_{2}^{10} a_{3}^{-50} \quad a_{2} a_{3}^{-10}
$$

$$
=a_{1}^{8} a_{2}^{11} a_{3}^{-59}
$$

Example

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{2}, a_{1}\right]=a_{3},\left[a_{3}, a_{1}\right]=\left[a_{3}, a_{2}\right]=1\right\rangle$
$w=a_{3} a_{1}^{13} a_{2}^{10} a_{1}^{5} a_{2} a_{1}^{10} a_{1}^{-20}$
Aim move a_{1} to the left.
Substitution rules:

$$
a_{2}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{2}^{x} a_{3}^{x y} \quad a_{3}^{x} a_{1}^{y} \rightarrow a_{1}^{y} a_{3}^{x}
$$

$$
w=\quad a_{3} \quad a_{1}^{13} \quad a_{2}^{10} \quad a_{1}^{5} \quad a_{2} \quad a_{1}^{10} \quad a_{1}^{-20}
$$

$$
=a_{1}^{8} \quad a_{3} \quad a_{2}^{10} a_{3}^{-50} \quad a_{2} a_{3}^{-10}
$$

$$
=a_{1}^{8} a_{2}^{11} a_{3}^{-59}
$$

Greatest Common Divisors

Aim: subgroup membership problem in nilpotent groups.

Greatest Common Divisors

Aim: subgroup membership problem in nilpotent groups.

Subgroup membership problem of \mathbb{Z} :

Given $a, a_{1}, \ldots, a_{n} \in \mathbb{Z}$, is $a \in\left\langle a_{1}, \ldots, a_{n}\right\rangle$?
With other words: are there $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ with

$$
a=x_{1} a_{1}+\cdots+x_{n} a_{n} ?
$$

Greatest Common Divisors

Aim: subgroup membership problem in nilpotent groups.
Subgroup membership problem of \mathbb{Z} :
Given $a, a_{1}, \ldots, a_{n} \in \mathbb{Z}$, is $a \in\left\langle a_{1}, \ldots, a_{n}\right\rangle$?
With other words: are there $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ with

$$
a=x_{1} a_{1}+\cdots+x_{n} a_{n} ?
$$

Extended gcd problem (ExTGCD)

On input of $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ in binary, compute $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ such that

$$
\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=x_{1} a_{1}+\cdots+x_{n} a_{n} .
$$

Greatest Common Divisors

Aim: subgroup membership problem in nilpotent groups.

Subgroup membership problem of \mathbb{Z} :

Given $a, a_{1}, \ldots, a_{n} \in \mathbb{Z}$, is $a \in\left\langle a_{1}, \ldots, a_{n}\right\rangle$?
With other words: are there $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ with

$$
a=x_{1} a_{1}+\cdots+x_{n} a_{n} ?
$$

Extended gcd problem (ExTGCD)

On input of $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ in binary, compute $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ such that

$$
\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=x_{1} a_{1}+\cdots+x_{n} a_{n} .
$$

$\rightsquigarrow a \in\left\langle a_{1}, \ldots, a_{n}\right\rangle$ iff $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right) \mid a$.

Greatest Common Divisors

Aim: subgroup membership problem in nilpotent groups.
Subgroup membership problem of \mathbb{Z} :
Given $a, a_{1}, \ldots, a_{n} \in \mathbb{Z}$, is $a \in\left\langle a_{1}, \ldots, a_{n}\right\rangle$?
With other words: are there $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ with

$$
a=x_{1} a_{1}+\cdots+x_{n} a_{n} ?
$$

Extended gcd problem (ExTGCD)

On input of $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ in binary, compute $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ such that

$$
\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=x_{1} a_{1}+\cdots+x_{n} a_{n} .
$$

$\rightsquigarrow a \in\left\langle a_{1}, \ldots, a_{n}\right\rangle$ iff $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right) \mid a$.

Proposition

ExTGCD with unary inputs and outputs is in TC^{0}.

Let $\left(h_{1}, \ldots, h_{n}\right)$ be generators of a subgroup H. We associate a matrix of coordinates

$$
A=\left(\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 m} \\
\vdots & \ddots & \vdots \\
\alpha_{n 1} & \cdots & \alpha_{n m}
\end{array}\right)
$$

where $\left(\alpha_{i 1}, \ldots \alpha_{i m}\right)$ are the Mal'cev coordinates of h_{i}.

Let $\left(h_{1}, \ldots, h_{n}\right)$ be generators of a subgroup H. We associate a matrix of coordinates

$$
A=\left(\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 m} \\
\vdots & \ddots & \vdots \\
\alpha_{n 1} & \cdots & \alpha_{n m}
\end{array}\right)
$$

where $\left(\alpha_{i 1}, \ldots \alpha_{i m}\right)$ are the Mal'cev coordinates of h_{i}.
Modify matrix without changing the subgroup generated by its rows:

Let $\left(h_{1}, \ldots, h_{n}\right)$ be generators of a subgroup H. We associate a matrix of coordinates

$$
A=\left(\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 m} \\
\vdots & \ddots & \vdots \\
\alpha_{n 1} & \cdots & \alpha_{n m}
\end{array}\right)
$$

where $\left(\alpha_{i 1}, \ldots \alpha_{i m}\right)$ are the Mal'cev coordinates of h_{i}.
Modify matrix without changing the subgroup generated by its rows:

- triangular shape ("Gaussian elimination")

Let $\left(h_{1}, \ldots, h_{n}\right)$ be generators of a subgroup H. We associate a matrix of coordinates

$$
A=\left(\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 m} \\
\vdots & \ddots & \vdots \\
\alpha_{n 1} & \cdots & \alpha_{n m}
\end{array}\right)
$$

where $\left(\alpha_{i 1}, \ldots \alpha_{i m}\right)$ are the Mal'cev coordinates of h_{i}.
Modify matrix without changing the subgroup generated by its rows:

- triangular shape ("Gaussian elimination")
- $H \cap\left\langle a_{i}, a_{i+1}, \ldots, a_{m}\right\rangle$ is generated by rows with 0 in first $i-1$ columns.

Let $\left(h_{1}, \ldots, h_{n}\right)$ be generators of a subgroup H. We associate a matrix of coordinates

$$
A=\left(\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 m} \\
\vdots & \ddots & \vdots \\
\alpha_{n 1} & \cdots & \alpha_{n m}
\end{array}\right)
$$

where $\left(\alpha_{i 1}, \ldots \alpha_{i m}\right)$ are the Mal'cev coordinates of h_{i}.
Modify matrix without changing the subgroup generated by its rows:

- triangular shape ("Gaussian elimination")
- $H \cap\left\langle a_{i}, a_{i+1}, \ldots, a_{m}\right\rangle$ is generated by rows with 0 in first $i-1$ columns.

Theorem

Matrix reduction is in TC^{0}.

Subgroup membership problem

Corollary

The subgroup membership problem is in TC^{0} for nilpotent groups.

Proof.

Question is $a_{1}^{k_{1}} \ldots a_{m}^{k_{m}} \in H$? Forward substitution:

$$
\left(X_{1}, \ldots, X_{m}\right) \circ\left(\begin{array}{lllll}
* & * & * & * & * \\
& * & * & * & * \\
& & * & * & * \\
& 0 & & * & * \\
& & & & *
\end{array}\right)=\left(k_{1}, \ldots, k_{m}\right)
$$

Example: Matrix reduction

$$
\begin{aligned}
& G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle . \\
& \text { Let } H=\left\langle h_{1}, h_{2}\right\rangle \text { with } \quad h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2} .
\end{aligned}
$$

Example: Matrix reduction

$$
\begin{aligned}
& G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle . \\
& \text { Let } H=\left\langle h_{1}, h_{2}\right\rangle \text { with } \quad h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2} .
\end{aligned}
$$

The associated matrix is $\quad A=\left(\begin{array}{lll}6 & 2 & 1 \\ 4 & 2 & 0\end{array}\right)$.

Example: Matrix reduction

$$
\begin{aligned}
& G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle . \\
& \text { Let } H=\left\langle h_{1}, h_{2}\right\rangle \text { with } \quad h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2} .
\end{aligned}
$$

The associated matrix is $\quad A=\left(\begin{array}{ccc}6 & 2 & 1 \\ 4 & 2 & 0\end{array}\right)$.

- Compute $\operatorname{gcd}(6,4)=2=6-4$.

Example: Matrix reduction

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$.
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with $\quad h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}$.

The associated matrix is $\quad A=\left(\begin{array}{lll}6 & 2 & 1 \\ 4 & 2 & 0\end{array}\right)$.

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{3}=h_{1} h_{2}^{-1}$.

Example: Matrix reduction

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$.
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with $\quad h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}$.

The associated matrix is $\quad A=\left(\begin{array}{ccc}6 & 2 & 1 \\ 4 & 2 & 0\end{array}\right)$.

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{3}=h_{1} h_{2}^{-1}=a_{1}^{6} a_{2}^{2} a_{3}\left(a_{1}^{4} a_{2}^{2}\right)^{-1}$.

Example: Matrix reduction

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$.
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with $\quad h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}$.

The associated matrix is $\quad A=\left(\begin{array}{lll}6 & 2 & 1 \\ 4 & 2 & 0\end{array}\right)$.

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{3}=h_{1} h_{2}^{-1}=a_{1}^{2} a_{3}^{1}$.

$$
\left(\begin{array}{lll}
6 & 2 & 1 \\
4 & 2 & 0 \\
2 & 0 & 1
\end{array}\right)
$$

Example: Matrix reduction

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$.
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with $\quad h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}$.

The associated matrix is $\quad A=\left(\begin{array}{lll}6 & 2 & 1 \\ 4 & 2 & 0\end{array}\right)$.

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{3}=h_{1} h_{2}^{-1}=a_{1}^{2} a_{3}^{1}$.
- Replace h_{1} by $h_{1}^{\prime}=h_{1} h_{3}^{-3}$ and h_{2} by $h_{2}^{\prime}=h_{2} h_{3}^{-2}$

$$
\left(\begin{array}{ccc}
0 & 2 & -6 \\
0 & 2 & -6 \\
2 & 0 & 1
\end{array}\right)
$$

Example: Matrix reduction

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$.
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with $\quad h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}$.

The associated matrix is $\quad A=\left(\begin{array}{ccc}6 & 2 & 1 \\ 4 & 2 & 0\end{array}\right)$.

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{3}=h_{1} h_{2}^{-1}=a_{1}^{2} a_{3}^{1}$.
- Replace h_{1} by $h_{1}^{\prime}=h_{1} h_{3}^{-3}$ and h_{2} by $h_{2}^{\prime}=h_{2} h_{3}^{-2}$
- Exchange first and last row and eliminate unnecessary row

$$
\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 2 & -6
\end{array}\right)
$$

Example: Matrix reduction

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$.
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with $\quad h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}$.

The associated matrix is $\quad A=\left(\begin{array}{ccc}6 & 2 & 1 \\ 4 & 2 & 0\end{array}\right)$.

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{3}=h_{1} h_{2}^{-1}=a_{1}^{2} a_{3}^{1}$.
- Replace h_{1} by $h_{1}^{\prime}=h_{1} h_{3}^{-3}$ and h_{2} by $h_{2}^{\prime}=h_{2} h_{3}^{-2}$
- Exchange first and last row and eliminate unnecessary row
- Add commutators

$$
\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 2 & -6 \\
0 & 0 & 4
\end{array}\right)
$$

Example: Matrix reduction

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$.
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with $\quad h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}$.

The associated matrix is $\quad A=\left(\begin{array}{ccc}6 & 2 & 1 \\ 4 & 2 & 0\end{array}\right)$.

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{3}=h_{1} h_{2}^{-1}=a_{1}^{2} a_{3}^{1}$.
- Replace h_{1} by $h_{1}^{\prime}=h_{1} h_{3}^{-3}$ and h_{2} by $h_{2}^{\prime}=h_{2} h_{3}^{-2}$
- Exchange first and last row and eliminate unnecessary row
- Add commutators

$$
\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 2 \\
0 & 0 & 4
\end{array}\right)
$$

Example: Matrix reduction

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$.
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with $\quad h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}$.

$$
\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 2 \\
0 & 0 & 4
\end{array}\right)
$$

- Is $a_{1} a_{2} a_{3} \in H$?

Example: Matrix reduction

$$
\begin{aligned}
& G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle . \\
& \text { Let } H=\left\langle h_{1}, h_{2}\right\rangle \text { with } \quad h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2} .
\end{aligned}
$$

$$
\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 2 \\
0 & 0 & 4
\end{array}\right)
$$

- Is $a_{1} a_{2} a_{3} \in H$?

No!

Example: Matrix reduction

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$.
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with $\quad h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}$.

$$
\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 2 \\
0 & 0 & 4
\end{array}\right)
$$

- Is $a_{1} a_{2} a_{3} \in H$?

No!

- Is $a_{1}^{4} a_{3}^{6} \in H$?

Example: Matrix reduction

$G=F_{2,2}=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$.
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with $\quad h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}$.

$$
\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 2 \\
0 & 0 & 4
\end{array}\right)
$$

- Is $a_{1} a_{2} a_{3} \in H$?
- Is $a_{1}^{4} a_{3}^{6} \in H$?

No!
Yes:

$$
a_{1}^{4} a_{3}^{6} \cdot\left(a_{1}^{2} a_{3}\right)^{-2}=a_{3}^{4} \in H .
$$

More Problems

Theorem

The following problems are in TC^{0} (resp. $\mathrm{TC}^{0}($ ExTGCD) for binary inputs):

- conjugacy problem,
- compute presentations of subgroups,
- compute kernels and preimages of homomorphisms,
- compute the centralizers,
- compute quotient presentations.

Conclusion and Open Questions

- Most problems by Macdonald et. al. 2015 are in TC ${ }^{0}$.

Conclusion and Open Questions

- Most problems by Macdonald et. al. 2015 are in TC ${ }^{0}$.
- Extended gcd problem with unary inputs and outputs is in TC^{0}.

Conclusion and Open Questions

- Most problems by Macdonald et. al. 2015 are in TC ${ }^{0}$.
- Extended gcd problem with unary inputs and outputs is in TC ${ }^{0}$.
- Binary versions in TC ${ }^{0}$ (ExtGCD)

Conclusion and Open Questions

- Most problems by Macdonald et. al. 2015 are in TC ${ }^{0}$.
- Extended gcd problem with unary inputs and outputs is in TC ${ }^{0}$.
- Binary versions in TC ${ }^{0}$ (ExtGCD)

Open Questions

- Complexity of the uniform word problem for fixed nilpotency class but an arbitrary number of generators?

Conclusion and Open Questions

- Most problems by Macdonald et. al. 2015 are in TC ${ }^{0}$.
- Extended gcd problem with unary inputs and outputs is in TC ${ }^{0}$.
- Binary versions in TC ${ }^{0}$ (ExtGCD)

Open Questions

- Complexity of the uniform word problem for fixed nilpotency class but an arbitrary number of generators?
- What if the nilpotency class is not fixed?

Conclusion and Open Questions

- Most problems by Macdonald et. al. 2015 are in TC ${ }^{0}$.
- Extended gcd problem with unary inputs and outputs is in TC ${ }^{0}$.
- Binary versions in TC ${ }^{0}$ (ExtGCD)

Open Questions

- Complexity of the uniform word problem for fixed nilpotency class but an arbitrary number of generators?
- What if the nilpotency class is not fixed?
- Same question for conjugacy...

Conclusion and Open Questions

- Most problems by Macdonald et. al. 2015 are in TC ${ }^{0}$.
- Extended gcd problem with unary inputs and outputs is in TC ${ }^{0}$.
- Binary versions in TC ${ }^{0}$ (ExtGCD)

Open Questions

- Complexity of the uniform word problem for fixed nilpotency class but an arbitrary number of generators?
- What if the nilpotency class is not fixed?
- Same question for conjugacy...

Thank you!

