The power word problem

Markus Lohrey¹ <u>Armin Weiß²</u>

¹Universität Siegen, Germany

²Universität Stuttgart, Germany

Aachen, August 27, 2019

Let G be a group generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

Let G be a group generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

• Word problem (WP): Given $w \in \Sigma^*$. Question: Is w = 1 in *G*?

Let G be a group generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

• Word problem (WP): Given $w \in \Sigma^*$. Question: Is w = 1 in G?

Is
$$b b^{-1} a a b^{-1} b a^{-1} a^{-1} = 1$$
 in $F(a, b)$?

Let G be a group generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

• Word problem (WP): Given $w \in \Sigma^*$. Question: Is w = 1 in G?

Is
$$b b^{-1} a a b^{-1} b a^{-1} a^{-1} = 1$$
 in $F(a, b)$?

Compressed word problem: Given a straight-line program G which produces a word w ∈ Σ*. Question: Is w = 1 in G?

Let G be a group generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

► Word problem (WP): Given
$$w \in \Sigma^*$$
.
Question: Is $w = 1$ in G?

Is
$$b b^{-1} a a b^{-1} b a^{-1} a^{-1} = 1$$
 in $F(a, b)$?

- Compressed word problem: Given a straight-line program G which produces a word w ∈ Σ*. Question: Is w = 1 in G?
- ► Power word problem (POWERWP): Given $p_1, \ldots, p_k \in \Sigma^*$ and $x_1, \ldots, x_k \in \mathbb{Z}$. Question: $p_1^{x_1} \cdots p_k^{x_k} = 1$ in G?

Is
$$b^{123}(b a a)^{123}a^{-246}b^{-123}(b a)^{-123}a^{123} = 1$$
?

straightforward way of compression

- straightforward way of compression
- ▶ natural for abelian groups: we write 27 instead of $1 + 1 + \cdots + 1$

- straightforward way of compression
- natural for abelian groups: we write 27 instead of $1 + 1 + \cdots + 1$

in nilpotent groups, every element can be expressed by a power word of logarithmic length

- straightforward way of compression
- natural for abelian groups: we write 27 instead of $1 + 1 + \cdots + 1$

in nilpotent groups, every element can be expressed by a power word of logarithmic length

 binary encoded matrices in SL(2, Z) yield power words over the generators (Gurevich, Schupp 2007)

- straightforward way of compression
- natural for abelian groups: we write 27 instead of $1 + 1 + \cdots + 1$

in nilpotent groups, every element can be expressed by a power word of logarithmic length

 binary encoded matrices in SL(2, Z) yield power words over the generators (Gurevich, Schupp 2007)

$$\begin{pmatrix} -499 & 5000 \\ -50 & 501 \end{pmatrix}$$

- straightforward way of compression
- ▶ natural for abelian groups: we write 27 instead of $1 + 1 + \cdots + 1$

 binary encoded matrices in SL(2, Z) yield power words over the generators (Gurevich, Schupp 2007)

$$\begin{pmatrix} -499 & 5000 \\ -50 & 501 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{10} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{50} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{-10}$$

- straightforward way of compression
- natural for abelian groups: we write 27 instead of $1 + 1 + \dots + 1$

 binary encoded matrices in SL(2, Z) yield power words over the generators (Gurevich, Schupp 2007)

$$\begin{pmatrix} -499 & 5000 \\ -50 & 501 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{10} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{50} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{-10}$$

► tool for the knapsack problem in RAAGs (Lohrey, Zetsche, 2015) (Given $p_1, \ldots, p_k, w \in \Sigma^*$, $\exists x_1, \ldots, x_k \in \mathbb{N}$ with $p_1^{x_1} \cdots p_k^{x_k} = w$?)

- straightforward way of compression
- ▶ natural for abelian groups: we write 27 instead of $1 + 1 + \dots + 1$
- in nilpotent groups, every element can be expressed by a power word of logarithmic length
- binary encoded matrices in SL(2, Z) yield power words over the generators (Gurevich, Schupp 2007)

$$\begin{pmatrix} -499 & 5000 \\ -50 & 501 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{10} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{50} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{-10}$$

- ► tool for the knapsack problem in RAAGs (Lohrey, Zetsche, 2015) (Given $p_1, \ldots, p_k, w \in \Sigma^*$, $\exists x_1, \ldots, x_k \in \mathbb{N}$ with $p_1^{x_1} \cdots p_k^{x_k} = w$?)
- better understanding of the compressed word problem:
 - Iower bounds
 - better upper bounds in the special case

Word problems of free groups

$$F(a, b) = \{a, b, \overline{a}, \overline{b}\}^* / \{a\overline{a} = \overline{a}a = b\overline{b} = \overline{b}b = 1\}$$

Word problems of free groups

$$F(a,b) = \{a, b, \overline{a}, \overline{b}\}^* / \{a\overline{a} = \overline{a}a = b\overline{b} = \overline{b}b = 1\}$$

The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).

$$F(a,b) = \{a, b, \overline{a}, \overline{b}\}^* / \{a\overline{a} = \overline{a}a = b\overline{b} = \overline{b}b = 1\}$$

- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).
- WP(F_k) is NC¹-hard for $k \ge 2$ (Robinson, 1993).

$$F(a,b) = \{a, b, \overline{a}, \overline{b}\}^* / \{a\overline{a} = \overline{a}a = b\overline{b} = \overline{b}b = 1\}$$

- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).
- WP(F_k) is NC¹-hard for $k \ge 2$ (Robinson, 1993).
- COMPRESSEDWP(F_k) is P-complete for $k \ge 2$ (Lohrey, 2004).

$$F(a,b) = \{a, b, \overline{a}, \overline{b}\}^* / \{a\overline{a} = \overline{a}a = b\overline{b} = \overline{b}b = 1\}$$

- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).
- WP(F_k) is NC¹-hard for $k \ge 2$ (Robinson, 1993).
- COMPRESSEDWP(F_k) is P-complete for $k \ge 2$ (Lohrey, 2004).

Theorem

The power word problem for free groups is in $AC^{0}(WP(F_{2}))$.

 AC^0 = constant-depth, polynomial-size Boolean circuit $AC^0(L) = AC^0 + \text{oracle gates for } L$

$$F(a,b) = \{a, b, \overline{a}, \overline{b}\}^* / \{a\overline{a} = \overline{a}a = b\overline{b} = \overline{b}b = 1\}$$

- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).
- WP(F_k) is NC¹-hard for $k \ge 2$ (Robinson, 1993).
- COMPRESSEDWP(F_k) is P-complete for $k \ge 2$ (Lohrey, 2004).

Theorem

The power word problem for free groups is in $AC^{0}(WP(F_{2}))$.

 AC^0 = constant-depth, polynomial-size Boolean circuit $AC^0(L) = AC^0 + \text{oracle gates for } L$

The proof consists of three steps:

- Preprocessing
- Make exponents small
- Solve regular word problem

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1} .

Example 1

$$(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \overline{a} \overline{a} (a b)^{-1000}$$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1} .

Example 1

$$(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \overline{a} \overline{a} (a b)^{-1000}$$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1} .

Example 1

(

$$(a b)^{1000}a$$
 $(a b)^{-100}b^{100}\overline{a} \overline{a} (a b)^{-1000}$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1} .

Example 1

$$(a b)^{1000}a$$
 $a b^{-100}b^{100}\overline{a} \overline{a} (a b)^{-1000}$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1} .

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1} .

Example 1

∄ ∄ (a b)^{−1000} $(a b)^{1000} a$ X

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1} .

Example 1

$$(a b)^{1000}$$

$$(a b)^{-1000}$$

Markus Lohrey, Armin Weiß

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1} .

Example 1

(ab)1000

(ab)-1000

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1} .

Example 1

(ab)1000

 $(ab)^{=1000} = 1$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1} .

Example 1

$$(ab)^{1000}$$
 $(ab)^{-1000} = 1$
Example 2
 $b^{123}(b a a)^{123}a^{-246}b^{-123}(\overline{b} \overline{a})^{123}a^{123}$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1} .

Example 1

$$(ab)^{1000}$$
 $(ab)^{-1000} = 1$
Example 2
 $b^{123}(b a a)^{123}a^{-246}b^{-123}(\overline{b} \overline{a})^{123}a^{123} \neq 1$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1} .

Example 1

$$(ab)^{1000} = 1$$

Example 2
 $b^{123}(b a a)^{123}a^{-246}b^{-123}(\overline{b} \overline{a})^{123}a^{123} \neq 1$
Example 3
 $(a a)^{500} (\overline{a})^{999} \overline{a}$

Markus Lohrey, Armin Weiß

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1} .

Example 1

$$(ab)^{1000}$$
 $(ab)^{-1000} = 1$
Example 2
 $b^{123}(b a a)^{123}a^{-246}b^{-123}(\overline{b} \overline{a})^{123}a^{123} \neq 1$
Example 3
 $(a a)^{500} (\overline{a})^{999} \overline{a} = 1$

Let $F = F(\{a, b\})$ be the free group. Write \overline{a} for a^{-1} .

Example 1

$$(ab)^{1000}$$
 $(ab)^{-1000} = 1$
Example 2
 $b^{123}(b a a)^{123}a^{-246}b^{-123}(\overline{b} \overline{a})^{123}a^{123} \neq 1$
Example 3
 $(a a)^{500} (\overline{a})^{999} \overline{a} = 1$
Example 4

$$(b \, a \, a \, \overline{a} \, b \, a)^{500} \, (b)^2 \, (\overline{b} \, \overline{b} \, \overline{a} b)^{999} \, (\overline{b} \, \overline{a} \, \overline{b} \, \overline{b} \, a \, b)^1 (a \, b \,)^{-1}$$

Markus Lohrey, Armin Weiß

Preprocessing

- $\Omega \subseteq \Sigma^+$ is set of non-empty words p with
- (1) p is cyclically reduced,
- (2) p is primitive,
- (3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Preprocessing

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,
- (3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

$$\Omega = \left\{ a, b, ab, a\overline{b}, aab, aa\overline{b}, \dots \right\}$$
$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{\times} and w a factor of q^{\vee} . If vw = 1 in F and $|v| = |w| \ge |p| + |q| - 1$, then p = q.

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{\times} and w a factor of q^{\vee} . If vw = 1 in F and $|v| = |w| \ge |p| + |q| - 1$, then p = q.

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Lemma

Let
$$p, q \in \Omega$$
 and v a factor of p^x and w a factor of q^y .
If $vw = 1$ in F and $|v| = |w| \ge |p| + |q| - 1$, then $p = q$.

Proof.

• By (1),
$$v = w^{-1}$$
 as words.

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Lemma

Let
$$p, q \in \Omega$$
 and v a factor of p^{\times} and w a factor of q^{y} .
If $vw = 1$ in F and $|v| = |w| \ge |p| + |q| - 1$, then $p = q$

Proof.

• By (1),
$$v = w^{-1}$$
 as words.

 \rightsquigarrow **v** has periods |p| and |q|.

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Lemma

Let
$$p, q \in \Omega$$
 and v a factor of p^{\times} and w a factor of q^{y} .
If $vw = 1$ in F and $|v| = |w| \ge |p| + |q| - 1$, then $p = q$

Proof.

By (1), v = w⁻¹ as words. → v has periods |p| and |q|.
By Fine and Wilf's theorem v has period gcd(|p|, |q|).

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{ uv \mid vu = p \text{ or } vu = p^{-1} \}$).

Lemma

Let
$$p, q \in \Omega$$
 and v a factor of p^{\times} and w a factor of q^{y} .
If $vw = 1$ in F and $|v| = |w| \ge |p| + |q| - 1$, then $p = q$

Proof.

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{uv \mid vu = p \text{ or } vu = p^{-1}\}$).

Lemma

Let
$$p, q \in \Omega$$
 and v a factor of p^x and w a factor of q^y .
If $vw = 1$ in F and $|v| = |w| \ge |p| + |q| - 1$, then $p = q$

Proof.

$$\Omega \subseteq \Sigma^+$$
 is set of non-empty words p with

- (1) p is cyclically reduced,
- (2) p is primitive,

(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\{ uv \mid vu = p \text{ or } vu = p^{-1} \}$).

Lemma

Let
$$p, q \in \Omega$$
 and v a factor of p^x and w a factor of q^y .
If $vw = 1$ in F and $|v| = |w| \ge |p| + |q| - 1$, then $p = q$

Proof.

Power word problem in free groups

The first aim is to rewrite an input word $q_1^{y_1}\cdots q_n^{y_n}$ in the form

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced. (1)

The first aim is to rewrite an input word $q_1^{y_1}\cdots q_n^{y_n}$ in the form

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

The first aim is to rewrite an input word $q_1^{y_1}\cdots q_n^{y_n}$ in the form

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

Freely reduce the q_i (in AC⁰(WP(F))), W., 2016).

The first aim is to rewrite an input word $q_1^{y_1}\cdots q_n^{y_n}$ in the form

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

- Freely reduce the q_i (in AC⁰(WP(F))), W., 2016).
- Make each q_i cyclically reduced.

The first aim is to rewrite an input word $q_1^{y_1}\cdots q_n^{y_n}$ in the form

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

- Freely reduce the q_i (in AC⁰(WP(F))), W., 2016).
- Make each q_i cyclically reduced.
- Make each q_i primitive.

The first aim is to rewrite an input word $q_1^{y_1}\cdots q_n^{y_n}$ in the form

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

- Freely reduce the q_i (in AC⁰(WP(F))), W., 2016).
- Make each q_i cyclically reduced.
- Make each q_i primitive.

• Make q_i lex. minimal in $\{uv \mid vu = q_i \text{ or } vu = q_i^{-1}\}$.

The first aim is to rewrite an input word $q_1^{y_1}\cdots q_n^{y_n}$ in the form

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

- Freely reduce the q_i (in AC⁰(WP(F))), W., 2016).
- Make each q_i cyclically reduced.
- Make each q_i primitive.

Make q_i lex. minimal in $\{ uv \mid vu = q_i \text{ or } vu = q_i^{-1} \}$. This yields $s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$

The first aim is to rewrite an input word $q_1^{y_1}\cdots q_n^{y_n}$ in the form

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced. (1)

Lemma

Given a power word v, a power word w of the form (1) with $v =_F w$ can be computed in $AC^0(WP(F))$.

- Freely reduce the q_i (in AC⁰(WP(F))), W., 2016).
- Make each q_i cyclically reduced.
- Make each q_i primitive.

Make q_i lex. minimal in $\{ uv \mid vu = q_i \text{ or } vu = q_i^{-1} \}$. This yields $s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$

Freely reduce the *s_i*.

Now we have a "nice" instance

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced.

We know that

▶ if a long factor of $p_i^{x_i}$ cancels with a factor of $p_i^{x_j}$, then $p_i = p_j$.

Now we have a "nice" instance

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced.

We know that

• if a long factor of $p_i^{x_i}$ cancels with a factor of $p_i^{x_j}$, then $p_i = p_j$.

Idea:

Decrease all exponents of p_i simultaneously.

Now we have a "nice" instance

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced.

We know that

▶ if a long factor of $p_i^{x_i}$ cancels with a factor of $p_i^{x_j}$, then $p_i = p_j$.

Idea:

Decrease all exponents of p_i simultaneously.

But: cannot delete them entirely:

$$a^{100}ba^{-100}\overline{b} \neq 1$$
, but $a^0ba^0\overline{b} = 1$

Now we have a "nice" instance

 $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$ with $p_i \in \Omega$ and s_i freely reduced.

We know that

▶ if a long factor of $p_i^{x_i}$ cancels with a factor of $p_i^{x_j}$, then $p_i = p_j$.

Idea:

• Decrease all exponents of p_i simultaneously.

But: cannot delete them entirely:

$$a^{100}ba^{-100}\overline{b} \neq 1$$
, but $a^0ba^0\overline{b} = 1$

Nor down to 1:

$$a^{100}(\overline{a} b a)^1 a^{-100}\overline{b} \neq 1$$
 but $a^1(\overline{a} b a)^1 a^{-1}\overline{b} = 1$

Define
$$\mathcal{S}(w) = u_0 p^{z_1} u_1 \cdots p^{z_m} u_m$$
 where $z_i = y_i - \operatorname{sign}(y_i) \cdot \sum_{j \in C_i} d_j$

Proposition

$$w =_F 1 \iff \mathcal{S}(w) =_F 1.$$

Proposition

$$w =_F 1 \iff \mathcal{S}(w) =_F 1.$$

Proof of the main theorem.

- Preprocessing gives a "nice word" $w = s_0 p_1^{x_1} s_1 \cdots p_n^{x_n} s_n$.
- For all p ∈ Ω which appear in w, compute S(w) in parallel (iterated addition ~→ in TC⁰).
- ► Yields a word of polynomial length ~→ ordinary word problem.

Theorem

Let G be f.g. and $H \leq G$ of finite index. Then $POWERWP(G) \leq_{m}^{NC^{1}} POWERWP(H).$

Theorem

Let G be f.g. and $H \leq G$ of finite index. Then $POWERWP(G) \leq_{m}^{NC^{1}} POWERWP(H).$

Corollary

The power word problem of f.g. virtually free groups is in LOGSPACE.

Theorem

Let G be f.g. and $H \leq G$ of finite index. Then $POWERWP(G) \leq_{m}^{NC^{1}} POWERWP(H).$

Corollary

The power word problem of f.g. virtually free groups is in LOGSPACE.

Theorem

If G is f.g. nilpotent, then POWERWP(G) is in TC^0 .

Theorem

Let G be f.g. and $H \leq G$ of finite index. Then $POWERWP(G) \leq_{m}^{NC^{1}} POWERWP(H).$

Corollary

The power word problem of f.g. virtually free groups is in LOGSPACE.

Theorem

If G is f.g. nilpotent, then POWERWP(G) is in TC^0 .

Theorem

The power word problem of the Grigorchuk group is in LOGSPACE.

Markus Lohrey, Armin Weiß

Power word problem in wreath products

Theorem

For every f.g. abelian group G, POWERWP($G \wr \mathbb{Z}$) is in TC⁰.

Theorem

For every f.g. abelian group G, POWERWP($G \wr \mathbb{Z}$) is in TC⁰.

Theorem

Let G be either

- finite non-solvable
- f.g. free of rank ≥ 2 .

Then POWERWP($G \wr \mathbb{Z}$) *is* coNP*-complete.*

Theorem

For every f.g. abelian group G, POWERWP($G \wr \mathbb{Z}$) is in TC⁰.

Theorem

Let G be either

- finite non-solvable
- f.g. free of rank ≥ 2 .

Then $\operatorname{POWERWP}(G \wr \mathbb{Z})$ is coNP-complete.

For comparison:

- ▶ $WP(G \wr \mathbb{Z})$ is in LOGSPACE (resp. NC¹)
- COMPRESSEDWP(G ≥ Z) is PSPACE-complete (Lohrey 2019, unpublished)

Theorem

For every f.g. abelian group G, POWERWP($G \wr \mathbb{Z}$) is in TC⁰.

Theorem

Let G be either

- finite non-solvable
- f.g. free of rank ≥ 2 .

Then POWERWP($G \wr \mathbb{Z}$) *is* coNP*-complete.*

Proof idea.

Show CNF-UNSAT \leq POWERWP($G \wr \mathbb{Z}$):

- Every formula can be "simulated" in G (Barrington 89)
- ▶ Test all valuations "in parallel" in $G^{(\mathbb{Z})} \leq F_2 \wr \mathbb{Z}$

Open Questions

What if we allow nested exponents:

$$\left(b^{13}\overline{a}\left((b\,a^{8}a)^{13}a^{-26}b^{-13}\right)^{12}\right)^{16}\left((\overline{b}\,\overline{a}\,)^{13}a^{13}\right)^{20}$$

Conjecture: for constant nesting depth in AC⁰(WP(F₂)).
Not clear what happens for unbounded nesting depth:
... is it P-complete? ... or in AC⁰(WP(F₂))?

Open Questions

What if we allow nested exponents:

$$\left(b^{13}\overline{a}\left((b\,a^{8}a)^{13}a^{-26}b^{-13}\right)^{12}\right)^{16}\left((\overline{b}\,\overline{a}\,)^{13}a^{13}\right)^{20}$$

Conjecture: for constant nesting depth in AC⁰(WP(F₂)).
Not clear what happens for unbounded nesting depth:
... is it P-complete? ... or in AC⁰(WP(F₂))?

- Complexity of **POWERWP** in other groups:
 - (G ≥ Z) for G non-abelian, but not free nor finite, non-solvable (e.g. G nilpotent)?
 - hyperbolic groups?
 - RAAGs (= graph groups)?
 - HNN extensions and amalgamated products over finite subgroups?
 - Baumslag-Solitar groups?
Open Questions

What if we allow nested exponents:

$$\left(b^{13}\overline{a}\left((b\,a^{8}a)^{13}a^{-26}b^{-13}\right)^{12}\right)^{16}\left((\overline{b}\,\overline{a}\,)^{13}a^{13}\right)^{20}$$

Conjecture: for constant nesting depth in AC⁰(WP(F₂)).
Not clear what happens for unbounded nesting depth:
... is it P-complete? ... or in AC⁰(WP(F₂))?

- Complexity of **POWERWP** in other groups:
 - (G ≥ Z) for G non-abelian, but not free nor finite, non-solvable (e.g. G nilpotent)?
 - hyperbolic groups?
 - RAAGs (= graph groups)?
 - HNN extensions and amalgamated products over finite subgroups?
 - Baumslag-Solitar groups?

Thank you!