The power word problem

Markus Lohrey ${ }^{1} \quad$ Armin Weiß ${ }^{2}$
${ }^{1}$ Universität Siegen, Germany
${ }^{2}$ Universität Stuttgart, Germany

Aachen, August 27, 2019

The word problem
Let G be a group generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

The word problem

Let G be a group generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem (WP): Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?

The word problem

Let G be a group generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem (WP): Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?

$$
\text { Is } \quad b b^{-1} a a b^{-1} b a^{-1} a^{-1}=1 \text { in } F(a, b) \quad \text { ? }
$$

The word problem

Let G be a group generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem (WP): Given $w \in \Sigma^{*}$.

Question: Is $w=1$ in G ?

$$
\text { Is } \quad b b^{-1} a a b^{-1} b a^{-1} a^{-1}=1 \text { in } F(a, b) \quad \text { ? }
$$

- Compressed word problem: Given a straight-line program \mathbb{G} which produces a word $w \in \Sigma^{*}$.

Question: Is $w=1$ in G ?

The word problem

Let G be a group generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem (WP): Given $w \in \Sigma^{*}$.

Question: Is $w=1$ in G ?

$$
\text { Is } \quad b b^{-1} a a b^{-1} b a^{-1} a^{-1}=1 \text { in } F(a, b) \quad \text { ? }
$$

- Compressed word problem: Given a straight-line program \mathbb{G} which produces a word $w \in \Sigma^{*}$.

Question: Is $w=1$ in G ?

- Power word problem (PowerWP):

Given $p_{1}, \ldots, p_{k} \in \Sigma^{*}$ and $x_{1}, \ldots, x_{k} \in \mathbb{Z}$. Question: $p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}=1$ in G?

$$
\text { Is } \quad b^{123}(b a a)^{123} a^{-246} b^{-123}(b a)^{-123} a^{123}=1
$$

Why is the power word problem interesting?

- straightforward way of compression

Why is the power word problem interesting?

- straightforward way of compression
- natural for abelian groups: we write 27 instead of $\underbrace{1+1+\cdots+1}_{27 \text { ones }}$
- straightforward way of compression
- natural for abelian groups: we write 27 instead of $\underbrace{1+1+\cdots+1}_{27 \text { ones }}$
- in nilpotent groups, every element can be expressed by a power word of logarithmic length

Why is the power word problem interesting?

- straightforward way of compression
- natural for abelian groups: we write 27 instead of $\underbrace{1+1+\cdots+1}_{27 \text { ones }}$
- in nilpotent groups, every element can be expressed by a power word of logarithmic length
- binary encoded matrices in $\operatorname{SL}(2, \mathbb{Z})$ yield power words over the generators (Gurevich, Schupp 2007)

Why is the power word problem interesting?

- straightforward way of compression
- natural for abelian groups: we write 27 instead of $\underbrace{1+1+\cdots+1}_{27 \text { ones }}$
- in nilpotent groups, every element can be expressed by a power word of logarithmic length
- binary encoded matrices in $\operatorname{SL}(2, \mathbb{Z})$ yield power words over the generators (Gurevich, Schupp 2007)

$$
\left(\begin{array}{cc}
-499 & 5000 \\
-50 & 501
\end{array}\right)
$$

Why is the power word problem interesting?

- straightforward way of compression
- natural for abelian groups: we write 27 instead of $\underbrace{1+1+\cdots+1}_{27 \text { ones }}$
- in nilpotent groups, every element can be expressed by a power word of logarithmic length
- binary encoded matrices in $\operatorname{SL}(2, \mathbb{Z})$ yield power words over the generators (Gurevich, Schupp 2007)

$$
\left(\begin{array}{cc}
-499 & 5000 \\
-50 & 501
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{10}\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{50}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{-10}
$$

Why is the power word problem interesting?

- straightforward way of compression
- natural for abelian groups: we write 27 instead of $\underbrace{1+1+\cdots+1}_{27 \text { ones }}$
- in nilpotent groups, every element can be expressed by a power word of logarithmic length
- binary encoded matrices in $\operatorname{SL}(2, \mathbb{Z})$ yield power words over the generators (Gurevich, Schupp 2007)

$$
\left(\begin{array}{cc}
-499 & 5000 \\
-50 & 501
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{10}\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{50}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{-10}
$$

- tool for the knapsack problem in RAAGs (Lohrey, Zetsche, 2015) (Given $p_{1}, \ldots, p_{k}, w \in \Sigma^{*}, \exists x_{1}, \ldots, x_{k} \in \mathbb{N}$ with $p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}=w$?)

Why is the power word problem interesting?

- straightforward way of compression
- natural for abelian groups: we write 27 instead of $\underbrace{1+1+\cdots+1}_{27 \text { ones }}$
- in nilpotent groups, every element can be expressed by a power word of logarithmic length
- binary encoded matrices in $\operatorname{SL}(2, \mathbb{Z})$ yield power words over the generators (Gurevich, Schupp 2007)

$$
\left(\begin{array}{cc}
-499 & 5000 \\
-50 & 501
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{10}\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{50}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{-10}
$$

- tool for the knapsack problem in RAAGs (Lohrey, Zetsche, 2015) (Given $p_{1}, \ldots, p_{k}, w \in \Sigma^{*}, \exists x_{1}, \ldots, x_{k} \in \mathbb{N}$ with $p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}=w$?)
- better understanding of the compressed word problem:
- lower bounds
- better upper bounds in the special case

Word problems of free groups

$$
F(a, b)=\{a, b, \bar{a}, \bar{b}\}^{*} /\{a \bar{a}=\bar{a} a=b \bar{b}=\bar{b} b=1\}
$$

Word problems of free groups

$$
F(a, b)=\{a, b, \bar{a}, \bar{b}\}^{*} /\{a \bar{a}=\bar{a} a=b \bar{b}=\bar{b} b=1\}
$$

- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).

$$
F(a, b)=\{a, b, \bar{a}, \bar{b}\}^{*} /\{a \bar{a}=\bar{a} a=b \bar{b}=\bar{b} b=1\}
$$

- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).
- WP $\left(F_{k}\right)$ is NC^{1}-hard for $k \geq 2$ (Robinson, 1993).

$$
F(a, b)=\{a, b, \bar{a}, \bar{b}\}^{*} /\{a \bar{a}=\bar{a} a=b \bar{b}=\bar{b} b=1\}
$$

- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).
- $\mathrm{WP}\left(F_{k}\right)$ is NC^{1}-hard for $k \geq 2$ (Robinson, 1993).
- CompressedWP $\left(F_{k}\right)$ is P-complete for $k \geq 2$ (Lohrey, 2004).

$$
F(a, b)=\{a, b, \bar{a}, \bar{b}\}^{*} /\{a \bar{a}=\bar{a} a=b \bar{b}=\bar{b} b=1\}
$$

- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).
- $\mathrm{WP}\left(F_{k}\right)$ is NC^{1}-hard for $k \geq 2$ (Robinson, 1993).
- CompressedWP $\left(F_{k}\right)$ is P-complete for $k \geq 2$ (Lohrey, 2004).

Theorem

The power word problem for free groups is in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$.
$\mathrm{AC}^{0}=$ constant-depth, polynomial-size Boolean circuit $\mathrm{AC}^{0}(L)=\mathrm{AC}^{0}+$ oracle gates for L

Word problems of free groups

$$
F(a, b)=\{a, b, \bar{a}, \bar{b}\}^{*} /\{a \bar{a}=\bar{a} a=b \bar{b}=\bar{b} b=1\}
$$

- The word problem of free groups is in LOGSPACE (Lipton, Zalcstein, 1977).
- $\mathrm{WP}\left(F_{k}\right)$ is NC^{1}-hard for $k \geq 2$ (Robinson, 1993).
- CompressedWP $\left(F_{k}\right)$ is P-complete for $k \geq 2$ (Lohrey, 2004).

Theorem

The power word problem for free groups is in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$.
$\mathrm{AC}^{0}=$ constant-depth, polynomial-size Boolean circuit $\mathrm{AC}^{0}(L)=\mathrm{AC}^{0}+$ oracle gates for L

The proof consists of three steps:

- Preprocessing
- Make exponents small
- Solve regular word problem

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}.

Example 1

$$
(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \bar{a} \bar{a}(a b)^{-1000}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}.

Example 1

$$
(a b)^{1000} a b^{-100} b^{100} a b^{-100} b^{100} \bar{a} \bar{a}(a b)^{-1000}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}.

Example 1

$$
(a b)^{1000} a \quad a b^{-100} b^{100} \bar{a} \bar{a}(a b)^{-1000}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}.

Example 1

$$
(a b)^{1000} a \quad \quad a b^{-100} b^{100} \bar{a} \bar{a}(a b)^{-1000}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}.

Example 1

$$
(a b)^{1000} a \quad \text { a } \quad \bar{a} \bar{a}(a b)^{-1000}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}.

Example 1

$$
(a b)^{1000} \not \partial \quad \nexists \quad \nexists A(a b)^{-1000}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}.

Example 1

$(a b)^{1000}$
$(a b)^{-1000}$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}.

Example 1

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}.

Example 1

(2) $)^{-1000}=1$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}.

Example 1

$(26)^{1000}$

$$
\text { (2b) }-1000=1
$$

Example 2

$$
b^{123}(b a a)^{123} a^{-246} b^{-123}(\bar{b} \bar{a})^{123} a^{123}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}.

Example 1

$(36)^{1000}$

$$
\text { (2b) }-1000=1
$$

Example 2

$$
b^{123}(b a a)^{123} a^{-246} b^{-123}(\bar{b} \bar{a})^{123} a^{123} \neq 1
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}.

Example 1

$(26)^{1000}$

$$
(2 b)^{-1000}=1
$$

Example 2

$$
b^{123}(b a a)^{123} a^{-246} b^{-123}(\bar{b} \bar{a})^{123} a^{123} \neq 1
$$

Example 3

$$
(\mathrm{a} \mathrm{a})^{500}(\bar{a})^{999} \bar{a}
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}.

Example 1

$$
(a b)^{1000} \quad(a b)^{-1000}=1
$$

Example 2

$$
b^{123}(b a a)^{123} a^{-246} b^{-123}(\bar{b} \bar{a})^{123} a^{123} \neq 1
$$

Example 3

$$
(a \operatorname{a})^{500}(\bar{a})^{999} \bar{a}=1
$$

Examples: Power word problem in free groups

Let $F=F(\{a, b\})$ be the free group. Write \bar{a} for a^{-1}.

Example 1

```
(ab)}\mp@subsup{)}{}{1000
(2b)}\mp@subsup{}{}{-1000}=
```

Example 2

$$
b^{123}(b a a)^{123} a^{-246} b^{-123}(\bar{b} \bar{a})^{123} a^{123} \neq 1
$$

Example 3

$$
(a \operatorname{a})^{500}(\bar{a})^{999} \bar{a}=1
$$

Example 4

$$
(b \text { a a } \bar{a} b a)^{500}(b)^{2}(\bar{b} \bar{b} \bar{a} b)^{999}(\bar{b} \bar{a} \bar{b} \bar{b} a b)^{1}(a b)^{-1}
$$

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i.e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i.e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

$$
\Omega=\{a, b, a b, a \bar{b}, a a b, a a \bar{b}, \ldots\}
$$

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Proof.

- By (1), v=w w^{-1} as words.

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Proof.

- By (1), $v=w^{-1}$ as words. $\quad \rightsquigarrow v$ has periods $|p|$ and $|q|$.

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Proof.

- By (1), v=w w^{-1} as words.
$\rightsquigarrow v$ has periods $|p|$ and $|q|$.
- By Fine and Wilf's theorem v has period $\operatorname{gcd}(|p|,|q|)$.

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Proof.

- By (1), v=w w^{-1} as words.
$\rightsquigarrow v$ has periods $|p|$ and $|q|$.
- By Fine and Wilf's theorem v has period $\operatorname{gcd}(|p|,|q|)$.
\rightsquigarrow also p and q.

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i. e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Proof.

- By (1), v=w w^{-1} as words.
$\rightsquigarrow v$ has periods $|p|$ and $|q|$.
- By Fine and Wilf's theorem v has period $\operatorname{gcd}(|p|,|q|)$. \rightsquigarrow also p and q.
- By (2), $|p|=|q|$.

Preprocessing

$\Omega \subseteq \Sigma^{+}$is set of non-empty words p with
(1) p is cyclically reduced,
(2) p is primitive,
(3) p is lexicographically minimal among all cyclic permutations of p and p^{-1} (i.e., in $\left\{u v \mid v u=p\right.$ or $\left.v u=p^{-1}\right\}$).

Lemma

Let $p, q \in \Omega$ and v a factor of p^{x} and w a factor of q^{y}.
If $v w=1$ in F and $|v|=|w| \geq|p|+|q|-1$, then $p=q$.

Proof.

- By (1), $v=w^{-1}$ as words.
$\rightsquigarrow v$ has periods $|p|$ and $|q|$.
- By Fine and Wilf's theorem v has period $\operatorname{gcd}(|p|,|q|)$. \rightsquigarrow also p and q.
- By (2), $|p|=|q|$.
- By (3), since p is a factor of w^{-1}, we get $p=q$.

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

- Freely reduce the q_{i} (in $\mathrm{AC}^{0}(\mathrm{WP}(F))$), W., 2016).

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

- Freely reduce the q_{i} (in $\mathrm{AC}^{0}(\mathrm{WP}(F))$), W., 2016).
- Make each q_{i} cyclically reduced.

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

- Freely reduce the q_{i} (in $\mathrm{AC}^{0}(\mathrm{WP}(F))$), W., 2016).
- Make each q_{i} cyclically reduced.
- Make each q_{i} primitive.

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

- Freely reduce the q_{i} (in $\mathrm{AC}^{0}(\mathrm{WP}(F))$), W., 2016).
- Make each q_{i} cyclically reduced.
- Make each q_{i} primitive.
- Make q_{i} lex. minimal in $\left\{u v \mid v u=q_{i}\right.$ or $\left.v u=q_{i}^{-1}\right\}$.

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

- Freely reduce the q_{i} (in $\mathrm{AC}^{0}(\mathrm{WP}(F))$), W., 2016).
- Make each q_{i} cyclically reduced.
- Make each q_{i} primitive.
- Make q_{i} lex. minimal in $\left\{u v \mid v u=q_{i}\right.$ or $\left.v u=q_{i}^{-1}\right\}$.

This yields

$$
s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n}
$$

Preprocessing

The first aim is to rewrite an input word $q_{1}^{y_{1}} \cdots q_{n}^{y_{n}}$ in the form

$$
\begin{equation*}
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. } \tag{1}
\end{equation*}
$$

Lemma

Given a power word v, a power word w of the form (1) with $v=F w$ can be computed in $\mathrm{AC}^{0}(\mathrm{WP}(F))$.

- Freely reduce the q_{i} (in $\mathrm{AC}^{0}(\mathrm{WP}(F))$), W., 2016).
- Make each q_{i} cyclically reduced.
- Make each q_{i} primitive.
- Make q_{i} lex. minimal in $\left\{u v \mid v u=q_{i}\right.$ or $\left.v u=q_{i}^{-1}\right\}$.

This yields

$$
s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n}
$$

- Freely reduce the s_{i}.

Make exponents small

Now we have a "nice" instance

$$
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. }
$$

We know that

- if a long factor of $p_{i}^{x_{i}}$ cancels with a factor of $p_{j}^{x_{j}}$, then $p_{i}=p_{j}$.

Make exponents small

Now we have a "nice" instance

$$
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. }
$$

We know that

- if a long factor of $p_{i}^{x_{i}}$ cancels with a factor of $p_{j}^{\chi_{j}}$, then $p_{i}=p_{j}$.

Idea:

- Decrease all exponents of p_{i} simultaneously.

Make exponents small

Now we have a "nice" instance

$$
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. }
$$

We know that

- if a long factor of $p_{i}^{x_{i}}$ cancels with a factor of $p_{j}^{\chi_{j}}$, then $p_{i}=p_{j}$.

Idea:

- Decrease all exponents of p_{i} simultaneously.

But: cannot delete them entirely:

$$
a^{100} b a^{-100} \bar{b} \neq 1, \text { but } a^{0} b a^{0} \bar{b}=1
$$

Make exponents small

Now we have a "nice" instance

$$
w=s_{0} p_{1}^{x_{1}} s_{1} \cdots p_{n}^{x_{n}} s_{n} \quad \text { with } p_{i} \in \Omega \text { and } s_{i} \text { freely reduced. }
$$

We know that

- if a long factor of $p_{i}^{x_{i}}$ cancels with a factor of $p_{j}^{\chi_{j}}$, then $p_{i}=p_{j}$.

Idea:

- Decrease all exponents of p_{i} simultaneously.

But: cannot delete them entirely:

$$
a^{100} b a^{-100} \bar{b} \neq 1, \text { but } a^{0} b a^{0} \bar{b}=1
$$

Nor down to 1:

$$
a^{100}(\bar{a} b a)^{1} a^{-100} \bar{b} \neq 1 \text { but } a^{1}(\bar{a} b a)^{1} a^{-1} \bar{b}=1
$$

Make exponents small

For $p \in \Omega$ rite $w=u_{0} p^{y_{1}} u_{1} \cdots p^{y_{m}} u_{m}$ such that no u_{i} contains p^{x}.

Make exponents small

For $p \in \Omega$ rite $w=u_{0} p^{y_{1}} u_{1} \cdots p^{y_{m}} u_{m}$ such that no u_{i} contains p^{x}.

Make exponents small

For $p \in \Omega$ rite $w=u_{0} p^{y_{1}} u_{1} \cdots p^{y_{m}} u_{m}$ such that no u_{i} contains p^{x}.

Make exponents small

For $p \in \Omega$ rite $w=u_{0} p^{y_{1}} u_{1} \cdots p^{y_{m}} u_{m}$ such that no u_{i} contains p^{x}.

Define $\mathcal{S}(w)=u_{0} p^{z_{1}} u_{1} \cdots p^{z_{m}} u_{m}$ where $z_{i}=y_{i}-\operatorname{sign}\left(y_{i}\right) \cdot \sum_{j \in C_{i}} d_{j}$

Make exponents small

Proposition

$$
w={ }_{F} 1 \Longleftrightarrow \mathcal{S}(w)={ }_{F} 1 .
$$

Proposition

$$
w={ }_{F} 1 \Longleftrightarrow \mathcal{S}(w)={ }_{F} 1 .
$$

Proof of the main theorem.

- Preprocessing gives a "nice word" $w=s_{0} p_{1}^{\chi_{1}} s_{1} \cdots p_{n}^{\chi_{n}} s_{n}$.
- For all $p \in \Omega$ which appear in w, compute $\mathcal{S}(w)$ in parallel (iterated addition \rightsquigarrow in TC^{0}).
- Yields a word of polynomial length \rightsquigarrow ordinary word problem.

Further results on the power word problem

Theorem

Let G be f.g. and $H \leq G$ of finite index. Then
$\operatorname{PowerWP}(G) \leq_{\mathrm{m}}^{\mathrm{NC}^{1}} \operatorname{PowerWP}(H)$.

Further results on the power word problem

Theorem

Let G be f.g. and $H \leq G$ of finite index. Then

$$
\operatorname{PowerWP}(G) \leq_{\mathrm{m}}^{\mathrm{NC}^{1}} \operatorname{PowerWP}(H)
$$

Corollary

The power word problem of f.g. virtually free groups is in LOGSPACE.

Further results on the power word problem

Theorem

Let G be f.g. and $H \leq G$ of finite index. Then

$$
\operatorname{PowerWP}(G) \leq_{\mathrm{m}}^{\mathrm{NC}^{1}} \operatorname{PowerWP}(H)
$$

Corollary

The power word problem of f.g. virtually free groups is in LOGSPACE.

Theorem

If G is f.g. nilpotent, then $\operatorname{PowerWP}(G)$ is in TC^{0}.

Further results on the power word problem

Theorem

Let G be f.g. and $H \leq G$ of finite index. Then

$$
\operatorname{PowerWP}(G) \leq_{\mathrm{m}}^{\mathrm{NC}^{1}} \operatorname{PowerWP}(H)
$$

Corollary

The power word problem of f.g. virtually free groups is in LOGSPACE.

Theorem

If G is f.g. nilpotent, then $\operatorname{PowerWP}(G)$ is in TC^{0}.

Theorem

The power word problem of the Grigorchuk group is in LOGSPACE.

The power word problem in wreath products

Theorem

For every f.g. abelian group G, $\operatorname{PowERWP}(G \backslash \mathbb{Z})$ is in TC^{0}.

The power word problem in wreath products

Theorem

For every f.g. abelian group G, $\operatorname{PowERWP}(G \imath \mathbb{Z})$ is in TC^{0}.

Theorem

Let G be either

- finite non-solvable
- f.g. free of rank ≥ 2.

Then PowerWP $(G \imath \mathbb{Z})$ is coNP-complete.

The power word problem in wreath products

Theorem

For every f.g. abelian group G, $\operatorname{PowERWP}(G \imath \mathbb{Z})$ is in TC^{0}.

Theorem

Let G be either

- finite non-solvable
- f.g. free of rank ≥ 2.

Then PowerWP $(G \imath \mathbb{Z})$ is coNP-complete.
For comparison:

- $\operatorname{WP}(G \imath \mathbb{Z})$ is in LOGSPACE (resp. NC 1)
- CompressedWP $(G \imath \mathbb{Z})$ is PSPACE-complete (Lohrey 2019, unpublished)

The power word problem in wreath products

Theorem

For every f.g. abelian group G, $\operatorname{PoWERWP}(G \backslash \mathbb{Z})$ is in TC^{0}.

Theorem

Let G be either

- finite non-solvable
- f.g. free of rank ≥ 2.

Then PowerWP $(G \imath \mathbb{Z})$ is coNP-complete.

Proof idea.

Show CNF-UnSAT $\leq \operatorname{PowerWP}(G \imath \mathbb{Z})$:

- Every formula can be "simulated" in G (Barrington 89)
- Test all valuations "in parallel" in $G^{(\mathbb{Z})} \leq F_{2}$ (\mathbb{Z}

Open Questions

- What if we allow nested exponents:

$$
\left(b^{13} \bar{a}\left(\left(b a^{8} a\right)^{13} a^{-26} b^{-13}\right)^{12}\right)^{16}\left((\bar{b} \bar{a})^{13} a^{13}\right)^{20}
$$

- Conjecture: for constant nesting depth in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$.
- Not clear what happens for unbounded nesting depth: \ldots is it P -complete? \ldots or in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$?

Open Questions

- What if we allow nested exponents:

$$
\left(b^{13} \bar{a}\left(\left(b a^{8} a\right)^{13} a^{-26} b^{-13}\right)^{12}\right)^{16}\left((\bar{b} \bar{a})^{13} a^{13}\right)^{20}
$$

- Conjecture: for constant nesting depth in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$.
- Not clear what happens for unbounded nesting depth: \ldots is it P -complete? \ldots or in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$?
- Complexity of PowerWP in other groups:
- $(G \backslash \mathbb{Z})$ for G non-abelian, but not free nor finite, non-solvable (e.g. G nilpotent)?
- hyperbolic groups?
- RAAGs (= graph groups)?
- HNN extensions and amalgamated products over finite subgroups?
- Baumslag-Solitar groups?

Open Questions

- What if we allow nested exponents:

$$
\left(b^{13} \bar{a}\left(\left(b a^{8} a\right)^{13} a^{-26} b^{-13}\right)^{12}\right)^{16}\left((\bar{b} \bar{a})^{13} a^{13}\right)^{20}
$$

- Conjecture: for constant nesting depth in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$.
- Not clear what happens for unbounded nesting depth: \ldots is it P -complete? \ldots or in $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$?
- Complexity of PowerWP in other groups:
- $(G \backslash \mathbb{Z})$ for G non-abelian, but not free nor finite, non-solvable (e.g. G nilpotent)?
- hyperbolic groups?
- RAAGs (= graph groups)?
- HNN extensions and amalgamated products over finite subgroups?
- Baumslag-Solitar groups?

Thank you!

