Amenability of Schreier Graphs and Strongly
 Generic Algorithms for the Conjugacy Problem

Armin Weiß
Stuttgart / Stevens

Joint work with Volker Diekert and Alexei Miasnikov

New York, December 4th, 2015

Overview

Part I

- Amenability of Schreier graphs
- Bounds for the number of elliptic elements of HNN extensions and amalgamated products

Part II

- The conjugacy problem for hyperbolic elements of HNN extensions and amalgamated products
- Strongly generic algorithms for the conjugacy problem

Amenability of Schreier Graphs

Graph of groups

Special cases for fundamental groups of graphs of groups:
(1) Amalgamated products

$$
\left.G=H \star_{A} K=\langle H, K| \varphi(a)=\psi(a) \text { for } a \in A\right\rangle
$$

for groups H and K with a common subgroup A.
(2) HNN extensions

$$
\left.G=\left\langle H, t_{1}, \ldots, t_{k}\right| t_{i} a t_{i}^{-1}=\varphi_{i}(a) \text { for } a \in A_{i}, i=1, \ldots, k\right\rangle
$$

with stable letters t_{1}, \ldots, t_{k} and an isomorphism $\varphi_{i}: A_{i} \rightarrow B_{i}$ for subgroups A_{i} and B_{i} of H.
H, K : vertex groups or base groups,
A, A_{1}, \ldots, A_{k} : edge groups or associated subgroups.

Examples

- Free products $G * H$

Examples

- Free products $G * H$
- Baumslag-Solitar groups $\mathbf{B S}_{p, q}=\left\langle a, t \mid t a^{p} t^{-1}=a^{q}\right\rangle$

Examples

- Free products $G * H$
- Baumslag-Solitar groups $\mathbf{B S}_{p, q}=\left\langle a, t \mid t a^{p} t^{-1}=a^{q}\right\rangle$
- Baumslag's group (aka Baumslag-Gersten group)

$$
\begin{aligned}
\mathbf{B G}_{1,2} & =\left\langle a, b \mid\left(b a b^{-1}\right) a\left(b a b^{-1}\right)^{-1}=a^{2}\right\rangle \\
& =\left\langle\mathbf{B S}_{1,2}, b \mid b a b^{-1}=t\right\rangle
\end{aligned}
$$

Examples

- Free products $G * H$
- Baumslag-Solitar groups $\mathbf{B S}_{p, q}=\left\langle a, t \mid t a^{p} t^{-1}=a^{q}\right\rangle$
- Baumslag's group (aka Baumslag-Gersten group)

$$
\begin{aligned}
\mathbf{B G}_{1,2} & =\left\langle a, b \mid\left(b a b^{-1}\right) a\left(b a b^{-1}\right)^{-1}=a^{2}\right\rangle \\
& =\left\langle\mathbf{B S}_{1,2}, b \mid b a b^{-1}=t\right\rangle
\end{aligned}
$$

- Semidirect products
$H \rtimes F_{k}=\left\langle H, t_{1}, \ldots, t_{k} \mid t_{i} h t_{i}^{-1}=\varphi_{i}(h), h \in H, i=1, \ldots, k\right\rangle$

Schreier graphs

Schreier graph $\Gamma=\Gamma(G, P, \Sigma)$ of G with respect to a subgroup P and set of generators $\Sigma \subseteq G$:

- Vertices: $V(\Gamma)=P \backslash G=\{P g \mid g \in G\}=$ right cosets.

Schreier graphs

Schreier graph $\Gamma=\Gamma(G, P, \Sigma)$ of G with respect to a subgroup P and set of generators $\Sigma \subseteq G$:

- Vertices: $V(\Gamma)=P \backslash G=\{P g \mid g \in G\}=$ right cosets.
- Edges: $E(\Gamma)=P \backslash G \times \Sigma$: Arcs are drawn as

$$
P g \xrightarrow{a} P g a .
$$

Schreier graphs

Schreier graph $\Gamma=\Gamma(G, P, \Sigma)$ of G with respect to a subgroup P and set of generators $\Sigma \subseteq G$:

- Vertices: $V(\Gamma)=P \backslash G=\{P g \mid g \in G\}=$ right cosets.
- Edges: $E(\Gamma)=P \backslash G \times \Sigma$: Arcs are drawn as

$$
P g \xrightarrow{a} P g a .
$$

- | $\Sigma \mid$-regular directed graph.

Schreier graphs

Schreier graph $\Gamma=\Gamma(G, P, \Sigma)$ of G with respect to a subgroup P and set of generators $\Sigma \subseteq G$:

- Vertices: $V(\Gamma)=P \backslash G=\{P g \mid g \in G\}=$ right cosets.
- Edges: $E(\Gamma)=P \backslash G \times \Sigma$: Arcs are drawn as

$$
P g \xrightarrow{a} P g a .
$$

- | $\Sigma \mid$-regular directed graph.
- If $\Sigma=\Sigma^{-1}$, then $\Gamma(G, P, \Sigma)$ is an undirected graph thanks to the involution $\overline{(P g, a)}=\left(P g a^{-1}, a^{-1}\right)$.

Schreier graphs

Schreier graph $\Gamma=\Gamma(G, P, \Sigma)$ of G with respect to a subgroup P and set of generators $\Sigma \subseteq G$:

- Vertices: $V(\Gamma)=P \backslash G=\{P g \mid g \in G\}=$ right cosets.
- Edges: $E(\Gamma)=P \backslash G \times \Sigma$: Arcs are drawn as

$$
P g \xrightarrow{a} P g a .
$$

- | $\Sigma \mid$-regular directed graph.
- If $\Sigma=\Sigma^{-1}$, then $\Gamma(G, P, \Sigma)$ is an undirected graph thanks to the involution $\overline{(P g, a)}=\left(P g a^{-1}, a^{-1}\right)$.

Cayley graph of G is $\Gamma(G,\{1\}, \Sigma)$.

Schreier graphs

Schreier graph $\Gamma=\Gamma(G, P, \Sigma)$ of G with respect to a subgroup P and set of generators $\Sigma \subseteq G$:

- Vertices: $V(\Gamma)=P \backslash G=\{P g \mid g \in G\}=$ right cosets.
- Edges: $E(\Gamma)=P \backslash G \times \Sigma$: Arcs are drawn as

$$
P g \xrightarrow{a} P g a .
$$

- | $\Sigma \mid$-regular directed graph.
- If $\Sigma=\Sigma^{-1}$, then $\Gamma(G, P, \Sigma)$ is an undirected graph thanks to the involution $\overline{(P g, a)}=\left(P g a^{-1}, a^{-1}\right)$.

Cayley graph of G is $\Gamma(G,\{1\}, \Sigma)$.
1-to-1 correspondence of words in Σ^{*} and paths starting at P.

Examples

- Every 2d-regular graph is a Schreier graph (Gross 1977 for finite graphs, de la Harpe 2000 in general).
- Schreier graph $\Gamma(\langle a\rangle *\langle b\rangle,\langle a\rangle,\{a, b, \bar{a}, \bar{b}\})$

Examples

- The Schreier graph $\Gamma\left(\mathbf{B S}_{1,2},\langle a\rangle,\{a, \bar{a}, t, \bar{t}\}\right)$

Examples

- The Schreier graph $\Gamma\left(\mathbf{B S}_{2,2},\langle a\rangle,\{a, \bar{a}, t, \bar{t}\}\right)$

Examples

- The Schreier graph $\Gamma\left(\mathbf{B S}_{2,2},\langle a\rangle,\{a, \bar{a}, t, \bar{t}\}\right)$

- Schreier graph $\Gamma\left(H \rtimes F_{k}, H, \Sigma\right)=$ Cayley graph $\Gamma\left(F_{k},\{1\}, \Sigma\right)$

Notation

$\Gamma=(V, E)$ locally finite undirected graph.
$d(u, v)=$ distance from u to v.

Notation

$\Gamma=(V, E)$ locally finite undirected graph.
$d(u, v)=$ distance from u to v.

- 「 satisfies the Gromov condition if there exists a map $f: V \rightarrow V$ such that
- $\sup _{v \in V} d(f(v), v)<\infty$ and
- $\left|f^{-1}(v)\right| \geq 2$ for all $v \in V$.

Notation

$\Gamma=(V, E)$ locally finite undirected graph.
$d(u, v)=$ distance from u to v.

- 「 satisfies the Gromov condition if there exists a map $f: V \rightarrow V$ such that
- $\sup _{v \in V} d(f(v), v)<\infty$ and
- $\left|f^{-1}(v)\right| \geq 2$ for all $v \in V$.
- 「 satisfies the doubling condition if there exists some $k \in \mathbb{N}$ such that for every finite $U \subseteq V$

$$
|\{v \in V \mid d(v, U) \leq k\}| \geq 2|U|
$$

Notation

$\Gamma=(V, E)$ locally finite undirected graph.
$d(u, v)=$ distance from u to v.

- Γ satisfies the Gromov condition if there exists a map $f: V \rightarrow V$ such that
- $\sup _{v \in V} d(f(v), v)<\infty$ and
- $\left|f^{-1}(v)\right| \geq 2$ for all $v \in V$.
- 「 satisfies the doubling condition if there exists some $k \in \mathbb{N}$ such that for every finite $U \subseteq V$

$$
|\{v \in V \mid d(v, U) \leq k\}| \geq 2|U|
$$

- A random walk on a (directed) graph starts at some vertex, chooses an outgoing edge uniformly at random and goes to the target vertex, then it chooses the next edge...

Notation

$\Gamma=(V, E)$ locally finite undirected graph.
$d(u, v)=$ distance from u to v.

- 「 satisfies the Gromov condition if there exists a map $f: V \rightarrow V$ such that
- $\sup _{v \in V} d(f(v), v)<\infty$ and
- $\left|f^{-1}(v)\right| \geq 2$ for all $v \in V$.
- 「 satisfies the doubling condition if there exists some $k \in \mathbb{N}$ such that for every finite $U \subseteq V$

$$
|\{v \in V \mid d(v, U) \leq k\}| \geq 2|U|
$$

- A random walk on a (directed) graph starts at some vertex, chooses an outgoing edge uniformly at random and goes to the target vertex, then it chooses the next edge...
If Γ is d-regular.

$$
p^{(n)}(u, v)=\frac{\text { number of paths of length } n \text { from } u \text { to } v}{d^{n}}
$$

Amenability

Theorem（Kesten 1959，Gerl 1988，Gromov 1993，．．．）

Let $\Gamma=(V, E)$ be a d－regular undirected graph．The following statements are equivalent and define amenability：
（1）「 satisfies the Gromov condition，i．e．，there exists a map $f: V \rightarrow V$ such that $\sup _{v \in V} d(f(v), v)<\infty$ and $\left|f^{-1}(v)\right| \geq 2$ for all $v \in V$ ．
（2）「 satisfies the doubling condition：there exists some $k \in \mathbb{N}$ such that for every finite $U \subseteq V$ we have

$$
|\{v \in V \mid d(v, U) \leq k\}| \geq 2|U| .
$$

（3）The random walk on 「 has exponentially decreasing return probability．

Examples

The Cayley graph of the free group $F_{\{a, b\}}$ is non-amenable:

Examples

The Cayley graph of the free group $F_{\{a, b\}}$ is non-amenable:

Examples

The Cayley graph of the free group $F_{\{a, b\}}$ is non-amenable:

Examples

The Cayley graph of the free group $F_{\{a, b\}}$ is non-amenable:

Examples

Amenability of locally finite graphs is not a quasi-isometry invariant!!!

The graph above satisfies the Gromov condition, but it is quasi-isometric to an amenable graph:

Examples

Amenability of locally finite graphs is not a quasi-isometry invariant!!!

The graph above satisfies the Gromov condition, but it is quasi-isometric to an amenable graph:

But: for d-regular graphs it is a quasi-isometry invariant. \rightsquigarrow invariant under change of generating set

Characterization of Schreier Graphs

> Theorem (Diekert, Miasnikov, W. 2015)
> Let $G=H \star_{A} K$ with $[H: A] \geq[K: A] \geq 2$ and $P \in\{H, K\}$ and let $\Sigma=\Sigma^{-1}$ generate G.
> Then the Schreier graph $\Gamma(G, P, \Sigma)$ is non-amenable iff $[H: A] \geq 3$.

Characterization of Schreier Graphs

Theorem (Diekert, Miasnikov, W. 2015)

Let $G=H \star_{A} K$ with $[H: A] \geq[K: A] \geq 2$ and $P \in\{H, K\}$ and let $\Sigma=\Sigma^{-1}$ generate G.
Then the Schreier graph $\Gamma(G, P, \Sigma)$ is non-amenable iff $[H: A] \geq 3$.

Theorem (Diekert, Miasnikov, W. 2015)

Let $G=\langle H, t|$ tat $t^{-1}=\varphi(a)$ for $\left.a \in A\right\rangle$ be an HNN extension and let $\Sigma=\Sigma^{-1}$ generate G.
The Schreier graph $\Gamma(G, H, \Sigma)$ is non-amenable iff both $[H: A] \geq 2$ and $[H: \varphi(A)] \geq 2$.

Examples

Example

Let $\mathbf{B S}_{p, q}=\left\langle a, t \mid t a^{p} t^{-1}=a^{q}\right\rangle$ be the Baumslag-Solitar group with $1 \leq p \leq q$. Then the Schreier graph
$\Gamma\left(\mathbf{B S}_{p, q},\langle a\rangle,\{a, \bar{a}, t, \bar{t}\}\right)$ is non-amenable iff $p \neq 1$.

Examples

Example

Let $\mathbf{B S}_{p, q}=\left\langle a, t \mid t a^{p} t^{-1}=a^{q}\right\rangle$ be the Baumslag-Solitar group with $1 \leq p \leq q$. Then the Schreier graph
$\Gamma\left(\mathbf{B S}_{p, q},\langle a\rangle,\{a, \bar{a}, t, \bar{t}\}\right)$ is non-amenable iff $p \neq 1$.

Examples

Example

Let $\mathbf{B S}_{p, q}=\left\langle a, t \mid t a^{p} t^{-1}=a^{q}\right\rangle$ be the Baumslag-Solitar group with $1 \leq p \leq q$. Then the Schreier graph
$\Gamma\left(\mathbf{B S}_{p, q},\langle a\rangle,\{a, \bar{a}, t, \bar{t}\}\right)$ is non-amenable iff $p \neq 1$.

Example

The Schreier graph $\Gamma\left(\mathbf{B G}_{1,2}, \mathbf{B S}_{1,2},\{a, \bar{a}, b, \bar{b}\}\right)$ is non-amenable. Recall: $\mathbf{B G}_{1,2}=\left\langle\mathbf{B S}_{1,2}, b \mid b a b^{-1}=t\right\rangle$.

Examples

Example
The Schreier graph $\Gamma\left(H \rtimes F_{k}, H, \Sigma\right)$ is non-amenable iff $k \geq 2$.

Examples

Example

The Schreier graph $\Gamma\left(H \rtimes F_{k}, H, \Sigma\right)$ is non-amenable iff $k \geq 2$.

- If $k=1$:

$$
\left.H \rtimes F_{k}=\langle H, t| t h t^{-1}=\varphi(h) \text { for } h \in H\right\rangle
$$

and $[H: H]=[H: \varphi(H)]=1$.

- If $k \geq 2$:

$$
\left.H \rtimes F_{k}=\left\langle G, t_{k}\right| t_{k} a t_{k}^{-1}=\varphi_{k}(a) \text { for } a \in A_{k}\right\rangle
$$

for $G=\left\langle H, t_{1}, \ldots, t_{k-1}\right| t_{i} a t_{i}{ }^{-1}=\varphi_{i}(a)$ for $\left.a \in A_{i}\right\rangle$ and $\left[G: A_{k}\right]=\left[G: \varphi\left(A_{k}\right)\right]=\infty$.

Proof for amalgamated products

Theorem (Diekert, Miasnikov, W. 2015)
Let $G=H \star_{A} K$ with $[H: A] \geq[K: A] \geq 2$ and $P \in\{H, K\}$ and let $\Sigma=\Sigma^{-1}$ generate G.
Then the Schreier graph $\Gamma(G, P, \Sigma)$ is non-amenable iff
$[H: A] \geq 3$.

Proof

For the only-if direction we assume $[H: A]=[K: A]=2$.
$\rightsquigarrow A$ is normal in G and $G / A=\mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}=D_{\infty}$.

Proof for amalgamated products

Theorem (Diekert, Miasnikov, W. 2015)

Let $G=H \star_{A} K$ with $[H: A] \geq[K: A] \geq 2$ and $P \in\{H, K\}$ and let $\Sigma=\Sigma^{-1}$ generate G.
Then the Schreier graph $\Gamma(G, P, \Sigma)$ is non-amenable iff $[H: A] \geq 3$.

Proof

For the only-if direction we assume $[H: A]=[K: A]=2$.
$\rightsquigarrow A$ is normal in G and $G / A=\mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}=D_{\infty}$.
Assume $\Sigma \subseteq A \cup\{h, k\}$ for some $h \in H, k \in K$. Then the Schreier graph $\Gamma(G, H, \Sigma)$ is amenable:

Proof for amalgamated products

Lemma (Normal forms for amalgamated products)

Fix transversals $C \subseteq H$ and $D \subseteq K$ for cosets of A in H and K with $1 \in C \cap D$ s.t. the decompositions

$$
H=A C, \quad K=A D
$$

are unique.
Every group element $g \in G=H \star_{A} K$ can be uniquely written as

$$
g=G x_{0} \cdots x_{k}
$$

for some $k \in \mathbb{N}, x_{0} \in H \cup K$ such that for all $1 \leq i \leq k$ we have

$$
\begin{gathered}
x_{i} \in C \cup D \backslash\{1\} ; \\
x_{i-1} \in H \Longleftrightarrow x_{i} \in K .
\end{gathered}
$$

Proof for amalgamated products

Proof for amalgamated products (Cont.)
Let $[H: A] \geq 3$. We show the Gromov condition (1).
Let $f: P \backslash G \rightarrow P \backslash G$ as follows:

Proof for amalgamated products

Proof for amalgamated products (Cont.)

Let $[H: A] \geq 3$. We show the Gromov condition (1).
Let $f: P \backslash G \rightarrow P \backslash G$ as follows:
Fix $c \neq c^{\prime} \in C \backslash\{1\}$ and $d \in D \backslash\{1\}$.

- For a normal form $x_{0} \cdots x_{k}$ with $x_{k}=d$ and $x_{k-1} \in\left\{c, c^{\prime}\right\}$, set $f\left(P x_{0} \cdots x_{k}\right)=P x_{0} \cdots x_{k-2}$.
- For a normal form $x_{0} \cdots x_{k}$ with $x_{k} \in\left\{c, c^{\prime}\right\}$ and $x_{k-1}=d$, set $f\left(P x_{0} \cdots x_{k}\right)=P x_{0} \cdots x_{k-2}$.
- Otherwise, set $f\left(P x_{0} \cdots x_{k}\right)=P x_{0} \cdots x_{k}$.

Proof for amalgamated products

Proof for amalgamated products (Cont.)

Let $[H: A] \geq 3$. We show the Gromov condition (1).
Let $f: P \backslash G \rightarrow P \backslash G$ as follows:
Fix $c \neq c^{\prime} \in C \backslash\{1\}$ and $d \in D \backslash\{1\}$.

- For a normal form $x_{0} \cdots x_{k}$ with $x_{k}=d$ and $x_{k-1} \in\left\{c, c^{\prime}\right\}$, set $f\left(P x_{0} \cdots x_{k}\right)=P x_{0} \cdots x_{k-2}$.
- For a normal form $x_{0} \cdots x_{k}$ with $x_{k} \in\left\{c, c^{\prime}\right\}$ and $x_{k-1}=d$, set $f\left(P x_{0} \cdots x_{k}\right)=P x_{0} \cdots x_{k-2}$.
- Otherwise, set $f\left(P x_{0} \cdots x_{k}\right)=P x_{0} \cdots x_{k}$.
\checkmark Due to the normal form lemma, the function f is well-defined.

Proof for amalgamated products

Proof for amalgamated products (Cont.)

Let $[H: A] \geq 3$. We show the Gromov condition (1).
Let $f: P \backslash G \rightarrow P \backslash G$ as follows:
Fix $c \neq c^{\prime} \in C \backslash\{1\}$ and $d \in D \backslash\{1\}$.

- For a normal form $x_{0} \cdots x_{k}$ with $x_{k}=d$ and $x_{k-1} \in\left\{c, c^{\prime}\right\}$, set $f\left(P x_{0} \cdots x_{k}\right)=P x_{0} \cdots x_{k-2}$.
- For a normal form $x_{0} \cdots x_{k}$ with $x_{k} \in\left\{c, c^{\prime}\right\}$ and $x_{k-1}=d$, set $f\left(P x_{0} \cdots x_{k}\right)=P x_{0} \cdots x_{k-2}$.
- Otherwise, set $f\left(P x_{0} \cdots x_{k}\right)=P x_{0} \cdots x_{k}$.
\checkmark Due to the normal form lemma, the function f is well-defined.
$\checkmark \sup \{d(f(P w), P w) \mid P w \in P \backslash G\}<\infty$.

Proof for amalgamated products

Proof for amalgamated products (Cont.)

Let $[H: A] \geq 3$. We show the Gromov condition (1).
Let $f: P \backslash G \rightarrow P \backslash G$ as follows:
Fix $c \neq c^{\prime} \in C \backslash\{1\}$ and $d \in D \backslash\{1\}$.

- For a normal form $x_{0} \cdots x_{k}$ with $x_{k}=d$ and $x_{k-1} \in\left\{c, c^{\prime}\right\}$, set $f\left(P x_{0} \cdots x_{k}\right)=P x_{0} \cdots x_{k-2}$.
- For a normal form $x_{0} \cdots x_{k}$ with $x_{k} \in\left\{c, c^{\prime}\right\}$ and $x_{k-1}=d$, set $f\left(P x_{0} \cdots x_{k}\right)=P x_{0} \cdots x_{k-2}$.
- Otherwise, set $f\left(P x_{0} \cdots x_{k}\right)=P x_{0} \cdots x_{k}$.
\checkmark Due to the normal form lemma, the function f is well-defined.
$\checkmark \sup \{d(f(P w), P w) \mid P w \in P \backslash G\}<\infty$.
\checkmark For every normal form w, either $w c d$ and $w c^{\prime} d$ or $w d c$ and $w d c^{\prime}$ are normal forms. Hence, $\left|f^{-1}(P w)\right| \geq 2$ for all $w \in G$.

Action on the Bass-Serre tree

A fgogog G acts on its Bass-Serre tree.

Definition

The elliptic elements of G fix a vertex of the tree. The hyperbolic elements act without fixed points.

Action on the Bass-Serre tree

A fgogog G acts on its Bass-Serre tree.

Definition

The elliptic elements of G fix a vertex of the tree. The hyperbolic elements act without fixed points.

Consequence

- $\{$ elliptic elements $\}=\bigcup_{g \in G} g(H \cup K) g^{-1}$, or
- $\{$ elliptic elements $\}=\bigcup_{g \in G} g H g^{-1}$.
- $\{$ Hyperbolic elements $\}=G \backslash\{$ elliptic elements $\}$.
$S \subseteq \Sigma^{*}$ is called generic if $\frac{\left|\Sigma^{n} \backslash S\right|}{\left|\Sigma^{n}\right|} \rightarrow 0 \quad$ for $n \rightarrow \infty$.
$S \subseteq \Sigma^{*}$ is strongly generic if there is some $\varepsilon>0$ such that

$$
\frac{\left|\Sigma^{n} \backslash S\right|}{\left|\Sigma^{n}\right|} \leq 2^{-\varepsilon n} .
$$

Hyperbolic elements form a strongly generic subset if

$S \subseteq \Sigma^{*}$ is called generic if $\frac{\left|\Sigma^{n} \backslash S\right|}{\left|\Sigma^{n}\right|} \rightarrow 0 \quad$ for $n \rightarrow \infty$.
$S \subseteq \Sigma^{*}$ is strongly generic if there is some $\varepsilon>0$ such that

$$
\frac{\left|\Sigma^{n} \backslash S\right|}{\left|\Sigma^{n}\right|} \leq 2^{-\varepsilon n} .
$$

A random word defines a random walk in the Schreier graph.

Hyperbolic elements form a strongly generic subset if

$S \subseteq \Sigma^{*}$ is called generic if $\frac{\left|\Sigma^{n} \backslash S\right|}{\left|\Sigma^{n}\right|} \rightarrow 0 \quad$ for $n \rightarrow \infty$.
$S \subseteq \Sigma^{*}$ is strongly generic if there is some $\varepsilon>0$ such that

$$
\frac{\left|\Sigma^{n} \backslash S\right|}{\left|\Sigma^{n}\right|} \leq 2^{-\varepsilon n} .
$$

A random word defines a random walk in the Schreier graph.

Theorem (Diekert, Miasnikov, W. 2015)

- Let $G=H \star_{A} K$ be an amalgamated product such that $[H: A] \geq 3$ and $[K: A] \geq 2$, or let
- $G=\langle H, t| t a t^{-1}=\varphi(a)$ for $\left.a \in A\right\rangle$ be an HNN extension with $[H: A] \geq 2$ and $[H: \varphi(A)] \geq 2$.

Then the set of words representing hyperbolic elements in G is strongly generic in Σ^{*}.

Under the hypotheses of the characterization theorems:

- $\left\{w \in \Sigma^{*} \mid w \in H \cup K\right\}$ is strongly generic.
- $\left\{w \in \Sigma^{*} \mid w \in H\right\}$ is strongly generic.

Proof

Under the hypotheses of the characterization theorems:

- $\left\{w \in \Sigma^{*} \mid w \in H \cup K\right\}$ is strongly generic.
- $\left\{w \in \Sigma^{*} \mid w \in H\right\}$ is strongly generic.

Assume $\Sigma \subseteq H \cup K($ resp. $\Sigma \subseteq H \cup\{t, \bar{t}\})$.
Then $w \in \Sigma^{*}$ represents an elliptic group element iff there is some cyclic permutation $w^{\prime}=w_{2} w_{1}$ of $w=w_{1} w_{2}$ with $w^{\prime} \in H \cup K$.

Proof

Under the hypotheses of the characterization theorems:

- $\left\{w \in \Sigma^{*} \mid w \in H \cup K\right\}$ is strongly generic.
- $\left\{w \in \Sigma^{*} \mid w \in H\right\}$ is strongly generic.

Assume $\Sigma \subseteq H \cup K($ resp. $\Sigma \subseteq H \cup\{t, \bar{t}\})$.
Then $w \in \Sigma^{*}$ represents an elliptic group element iff there is some cyclic permutation $w^{\prime}=w_{2} w_{1}$ of $w=w_{1} w_{2}$ with $w^{\prime} \in H \cup K$.

There are only $|w|$ cyclic permutations:

$$
\begin{aligned}
\mid\left\{w \in \Sigma^{n} \mid w \text { elliptic }\right\} \mid & \leq n \cdot\left|\left\{w \in \Sigma^{n} \mid w \in H \cup K\right\}\right| \\
& \leq n \cdot 2^{\varepsilon n} \leq 2^{\varepsilon^{\prime} n} \quad \text { for } n \text { large enough. }
\end{aligned}
$$

\rightsquigarrow hyperbolic elements form a strongly generic set.

The conjugacy problem in HNN extensions and amalgamated products

Dehn's fundamental problems

Let G be generated by a finite set Σ with $\Sigma=\Sigma^{-1}$, i. e., there is an epimorphism

$$
\eta: \Sigma^{*} \rightarrow G
$$

Write \bar{a} for $a^{-1} \in \Sigma$.

- Word problem: Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?
- Conjugacy problem: Given $v, w \in \Sigma^{*}$. Question: $v \sim w$?

$$
\left(\exists z \in G \text { such that } z v z^{-1}=w ?\right)
$$

Examples

- Baumslag-Solitar groups $\mathbf{B S}_{p, q}$: Conjugacy problem is decidable in Logspace (W. 2015).

Examples

- Baumslag-Solitar groups BS $_{p, q}$: Conjugacy problem is decidable in Logspace (W. 2015).
- Baumslag's group $\mathbf{B G}_{1,2}=\left\langle\mathbf{B S}_{1,2}, b \mid b a b^{-1}=t\right\rangle$
- Word problem decidable in polynomial time (Miasnikov, Ushakov, Won 2006).
- Conjugacy problem decidable in non-elementary time (Beese 2012).

Examples

- Baumslag-Solitar groups $\mathbf{B S}_{p, q}$: Conjugacy problem is decidable in Logspace (W. 2015).
- Baumslag's group $\mathbf{B G}_{1,2}=\left\langle\mathbf{B S}_{1,2}, b \mid b a b^{-1}=t\right\rangle$
- Word problem decidable in polynomial time (Miasnikov, Ushakov, Won 2006).
- Conjugacy problem decidable in non-elementary time (Beese 2012).
- Semidirect products

$$
H \rtimes F_{k}=\left\langle H, t_{1}, \ldots, t_{k} \mid t_{i} h t_{i}^{-1}=\varphi_{i}(h), h \in H, i=1, \ldots, k\right\rangle
$$

Examples

- Baumslag-Solitar groups $\mathbf{B S}_{p, q}$: Conjugacy problem is decidable in Logspace (W. 2015).
- Baumslag's group $\mathbf{B G}_{1,2}=\left\langle\mathbf{B S}_{1,2}, b \mid b a b^{-1}=t\right\rangle$
- Word problem decidable in polynomial time (Miasnikov, Ushakov, Won 2006).
- Conjugacy problem decidable in non-elementary time (Beese 2012).
- Semidirect products

$$
H \rtimes F_{k}=\left\langle H, t_{1}, \ldots, t_{k} \mid t_{i} h t_{i}^{-1}=\varphi_{i}(h), h \in H, i=1, \ldots, k\right\rangle
$$

Theorem (Miller 1968)

There is a group $F_{n} \rtimes F_{k}$ with undecidable conjugacy problem.

Examples

- Baumslag-Solitar groups $\mathbf{B S}_{p, q}$: Conjugacy problem is decidable in Logspace (W. 2015).
- Baumslag's group $\mathbf{B G}_{1,2}=\left\langle\mathbf{B S}_{1,2}, b \mid b a b^{-1}=t\right\rangle$
- Word problem decidable in polynomial time (Miasnikov, Ushakov, Won 2006).
- Conjugacy problem decidable in non-elementary time (Beese 2012).
- Semidirect products

$$
H \rtimes F_{k}=\left\langle H, t_{1}, \ldots, t_{k} \mid t_{i} h t_{i}^{-1}=\varphi_{i}(h), h \in H, i=1, \ldots, k\right\rangle
$$

Theorem (Miller 1968)

There is a group $F_{n} \rtimes F_{k}$ with undecidable conjugacy problem.

Theorem (Bogopolski, Martino, Ventura 2010)

There is a group $\mathbb{Z}^{4} \rtimes F_{k}$ with undecidable conjugacy problem.

Strongly generic algorithms

$S \subseteq \Sigma^{*}$ is called generic if $\frac{\left|\Sigma^{n} \backslash S\right|}{\left|\Sigma^{n}\right|} \rightarrow 0 \quad$ for $n \rightarrow \infty$.
$S \subseteq \Sigma^{*}$ is strongly generic if there is some $\varepsilon>0$ such that

$$
\frac{\left|\Sigma^{n} \backslash S\right|}{\left|\Sigma^{n}\right|} \leq 2^{-\varepsilon n} .
$$

Strongly generic algorithms

$S \subseteq \Sigma^{*}$ is called generic if $\frac{\left|\Sigma^{n} \backslash S\right|}{\left|\Sigma^{n}\right|} \rightarrow 0 \quad$ for $n \rightarrow \infty$.
$S \subseteq \Sigma^{*}$ is strongly generic if there is some $\varepsilon>0$ such that

$$
\frac{\left|\Sigma^{n} \backslash S\right|}{\left|\Sigma^{n}\right|} \leq 2^{-\varepsilon n} .
$$

A problem \mathcal{P} is (strongly) generically decidable (in polynomial time) if there is a partial algorithm \mathcal{A} and a strongly generic set S such that
(1) \mathcal{A} solves \mathcal{P} (in polynomial time) on all inputs from S.
(2) \mathcal{A} may refuse to give an answer or it might not terminate, but only on inputs outside S.
(3) If \mathcal{A} gives an answer, then the answer must be correct.

Strongly generic algorithms

$S \subseteq \Sigma^{*}$ is called generic if $\frac{\left|\Sigma^{n} \backslash S\right|}{\left|\Sigma^{n}\right|} \rightarrow 0 \quad$ for $n \rightarrow \infty$.
$S \subseteq \Sigma^{*}$ is strongly generic if there is some $\varepsilon>0$ such that

$$
\frac{\left|\Sigma^{n} \backslash S\right|}{\left|\Sigma^{n}\right|} \leq 2^{-\varepsilon n} .
$$

A problem \mathcal{P} is (strongly) generically decidable (in polynomial time) if there is a partial algorithm \mathcal{A} and a strongly generic set S such that
(1) \mathcal{A} solves \mathcal{P} (in polynomial time) on all inputs from S.
(2) \mathcal{A} may refuse to give an answer or it might not terminate, but only on inputs outside S.
(3) If \mathcal{A} gives an answer, then the answer must be correct.

The algorithm \mathcal{A} never fools and gives an answer (in polynomial time) on "almost all" random inputs.

Strongly generic algorithms

"Trivial" generic algorithm for HNN extensions (Kapovich, Miasnikov, Schupp, Spilrain 2003):

$$
\left.G=\langle H, t| t a t^{-1}=\varphi(a) \text { for } a \in A\right\rangle
$$

Compute the image under $\varphi: G \rightarrow\langle t\rangle=G /\langle\langle H\rangle\rangle$ (count the number of letters t).

- if $\varphi(v) \neq \varphi(w)$, then v and w are not conjugate,
- otherwise, nothing is known.

Strongly generic algorithms

"Trivial" generic algorithm for HNN extensions (Kapovich, Miasnikov, Schupp, Spilrain 2003):

$$
\left.G=\langle H, t| t a t^{-1}=\varphi(a) \text { for } a \in A\right\rangle
$$

Compute the image under $\varphi: G \rightarrow\langle t\rangle=G /\langle\langle H\rangle\rangle$ (count the number of letters t).

- if $\varphi(v) \neq \varphi(w)$, then v and w are not conjugate,
- otherwise, nothing is known.

Generic, but not not strongly generic.
Never gives a positive answer.

Strongly generic algorithms

"Trivial" generic algorithm for HNN extensions (Kapovich, Miasnikov, Schupp, Spilrain 2003):

$$
\left.G=\langle H, t| t a t^{-1}=\varphi(a) \text { for } a \in A\right\rangle
$$

Compute the image under $\varphi: G \rightarrow\langle t\rangle=G /\langle\langle H\rangle\rangle$ (count the number of letters t).

- if $\varphi(v) \neq \varphi(w)$, then v and w are not conjugate,
- otherwise, nothing is known.

Generic, but not not strongly generic.
Never gives a positive answer.

Theorem (Borovik, Miasnikov, Remeslennikov 2005)

The conjugacy problem of Miller's group $F_{n} \rtimes F_{k}$ is strongly generically decidable in polynomial time.

Solving the conjugacy problem of hyperbolic elements

Lemma (Collins' Lemma)

Let $G=\langle H, t| t a t^{-1}=\varphi(a)$ for $\left.a \in A\right\rangle$ and let $v, w \in \Sigma^{*}$ be

- cyclically Britton-reduced, (no factor tat t^{-1} or $t^{-1} b t$ in vv and $w w$ for any $a \in A$ or $b \in \varphi(A))$,
- representing hyperbolic group elements.

Then
$v \sim w \Longleftrightarrow$ there is a cyclic permutation $w_{2} w_{1}$ of $w=w_{1} w_{2}$

$$
\text { and } a \in A \text { such that } v=a w_{2} w_{1} a^{-1} .
$$

Groups with more than one end

Observation
Let

$$
\left.G=\left\langle H, t_{1}, \ldots, t_{k}\right| t_{i} a t_{i}^{-1}=\varphi_{i}(a) \text { for } a \in A_{i}, i=1, \ldots, k\right\rangle
$$

with A_{i} finite for all i. If the the word problem of G is decidable, then the conjugacy problem of G is decidable for hyperbolic elements.

Groups with more than one end

Observation

Let

$$
\left.G=\left\langle H, t_{1}, \ldots, t_{k}\right| t_{i} a t_{i}^{-1}=\varphi_{i}(a) \text { for } a \in A_{i}, i=1, \ldots, k\right\rangle
$$

with A_{i} finite for all i. If the the word problem of G is decidable, then the conjugacy problem of G is decidable for hyperbolic elements.

Proof.

Input: v, w

- Apply Britton reductions cyclically.
- Simply test for all $a \in \bigcup_{i} A_{i}$ and all cyclic permutations $w_{2} w_{1}$ of w whether $v=a w_{2} w_{1} a^{-1}$.

Groups with more than one end

Corollary

Let G be a finitely generated group with more than one end. If the word problem of G is decidable in polynomial time, then the conjugacy problem of G is decidable in polynomial time in a strongly generic setting.

Proof.

By Stallings' Structure Theorem, G splits over a finite subgroup. There are two cases:

- G is virtually cyclic \rightsquigarrow conjugacy problem in linear time.
- Otherwise, hyperbolic elements form a strongly generic set.

HNN extenstions of free abelian groups

Theorem
Let

$$
\left.G=\left\langle H, t_{1}, \ldots, t_{k}\right| t_{i} a t_{i}^{-1}=\varphi_{i}(a) \text { for } a \in A_{i}, i=1, \ldots, k\right\rangle
$$

with H finitely generated free abelian. Then for hyperbolic elements, the conjugacy problem of G is decidable in polynomial time.

HNN extenstions of free abelian groups

Theorem

Let

$$
\left.G=\left\langle H, t_{1}, \ldots, t_{k}\right| t_{i} a t_{i}^{-1}=\varphi_{i}(a) \text { for } a \in A_{i}, i=1, \ldots, k\right\rangle
$$

with H finitely generated free abelian. Then for hyperbolic elements, the conjugacy problem of G is decidable in polynomial time.

The proof is based on:

Theorem (Frumkin 1977, von zur Gathen, Sieveking 1978)

Given a system of linear equation with integer coefficients, it can be determined in polynomial time whether it has an integral solution and, if so, the solution can be computed in polynomial time.

HNN extenstions of free abelian groups

Proof

Choose bases for H and for the A_{i}. This defines integer matrices $M_{i}^{(1)}, M_{i}^{(-1)}$ for the inclusions

$$
\text { id }: A_{i} \rightarrow H, \quad \quad \varphi_{i}: A_{i} \rightarrow H
$$

- Subgroup membership problem for $A_{i}\left(\right.$ resp. $\left.\varphi\left(A_{i}\right)\right)$ reduces to a system of linear integer equations.
- Britton reductions $t_{i} g t_{i}^{-1} \rightarrow \varphi_{i}(g)$ in polynomial time.
- Compute cyclically Britton-reduced words in polynomial time.

HNN extenstions of free abelian groups

Proof (Cont.)

Apply Collins' Lemma:

- Check all cyclic permutations.
- Let $\quad v=t_{i_{1}}^{\varepsilon_{1}} g_{1} \cdots t_{i_{n}}^{\varepsilon_{n}} g_{n}, \quad w=t_{i_{1}}^{\varepsilon_{1}} h_{1} \cdots t_{i_{n}}^{\varepsilon_{n}} h_{n}$
be cyclically reduced with $g_{i}, h_{i} \in H$. Then there is some $a \in \bigcup_{i} A_{i}$ with $a v a^{-1}={ }_{G} w$ iff the system of equations

$$
M_{i j}^{\left(\varepsilon_{j}\right)} x_{j}-M_{i_{j+1}}^{\left(\varepsilon_{j}\right)} x_{j+1}+g_{j}=h_{j} \quad \text { for } 1 \leq j \leq n
$$

has an integral solution x_{1}, \ldots, x_{n}.

HNN extenstions of free abelian groups

Corollary

$$
\left.G=\left\langle H, t_{1}, \ldots, t_{k}\right| t_{i} a t_{i}^{-1}=\varphi_{i}(a) \text { for } a \in A_{i}, i=1, \ldots, k\right\rangle
$$

with H finitely generated free abelian. The conjugacy problem of G is decidable in polynomial time on a strongly generic set.

HNN extenstions of free abelian groups

Corollary

$$
\left.G=\left\langle H, t_{1}, \ldots, t_{k}\right| t_{i} a t_{i}^{-1}=\varphi_{i}(a) \text { for } a \in A_{i}, i=1, \ldots, k\right\rangle
$$

with H finitely generated free abelian. The conjugacy problem of G is decidable in polynomial time on a strongly generic set.

Proof.

Two cases:

- $G=\langle H, t| t a t^{-1}=\varphi(a)$ for $\left.a \in H\right\rangle$

HNN extenstions of free abelian groups

Corollary

$$
\left.G=\left\langle H, t_{1}, \ldots, t_{k}\right| t_{i} a t_{i}^{-1}=\varphi_{i}(a) \text { for } a \in A_{i}, i=1, \ldots, k\right\rangle
$$

with H finitely generated free abelian. The conjugacy problem of G is decidable in polynomial time on a strongly generic set.

Proof.

Two cases:

- $G=\langle H, t| t a t^{-1}=\varphi(a)$ for $\left.a \in H\right\rangle$: for $g, h \in H$ (i. e., g, h elliptic):

$$
g \sim h \text { iff } \exists i \in \mathbb{N} \text { with } g=\varphi^{i}(h) \text { or } h=\varphi^{i}(g)
$$

\rightsquigarrow orbit problem for rational matrices. Dedicable in polynomial time (Kannan, Lipton 1986).
If $\varphi(H)=H$, see also Cavallo, Kahrobaei 2014.

HNN extenstions of free abelian groups

Corollary

$$
\left.G=\left\langle H, t_{1}, \ldots, t_{k}\right| t_{i} a t_{i}^{-1}=\varphi_{i}(a) \text { for } a \in A_{i}, i=1, \ldots, k\right\rangle
$$

with H finitely generated free abelian. The conjugacy problem of G is decidable in polynomial time on a strongly generic set.

Proof.

Two cases:

- $G=\langle H, t| t a t^{-1}=\varphi(a)$ for $\left.a \in H\right\rangle$: for $g, h \in H$ (i. e., g, h elliptic):

$$
g \sim h \text { iff } \exists i \in \mathbb{N} \text { with } g=\varphi^{i}(h) \text { or } h=\varphi^{i}(g)
$$

\rightsquigarrow orbit problem for rational matrices. Dedicable in polynomial time (Kannan, Lipton 1986).
If $\varphi(H)=H$, see also Cavallo, Kahrobaei 2014.

- Otherwise, hyperbolic elements form a strongly generic set.

HNN extenstions of free abelian groups

Corollary

$$
\left.G=\left\langle H, t_{1}, \ldots, t_{k}\right| t_{i} a t_{i}^{-1}=\varphi_{i}(a) \text { for } a \in A_{i}, i=1, \ldots, k\right\rangle
$$

with H finitely generated free abelian. The conjugacy problem of G is decidable in polynomial time on a strongly generic set.

Application

The conjugacy problem of the $\mathbb{Z}^{4} \rtimes F_{n}$ group with undecidable conjugacy problem (Bogopolski, Martino, Ventura 2010) is strongly generically in polynomial time.

Baumslag Group

Theorem (Diekert, Miasnikov, W. 2014)
The conjugacy problem of $\mathbf{B G}_{1,2}$ is decidable in polynomial time for hyperbolic elements.

Baumslag Group

Theorem (Diekert, Miasnikov, W. 2014)

The conjugacy problem of $\mathbf{B G}_{1,2}$ is decidable in polynomial time for hyperbolic elements.

Theorem (Diekert, Miasnikov, W. 2014)

Conjugacy in the Baumslag group $\mathrm{BG}_{1,2}$ can be solved in polynomial time in a strongly generic setting by some algorithm which always stops and which has non-elementary average time complexity.

Conjecture

The conjugacy problem of $\mathbf{B G}_{1,2}$ is non-elementary on average.

Baumslag Group

Theorem (Diekert, Miasnikov, W. 2014)

The conjugacy problem of $\mathbf{B G}_{1,2}$ is decidable in polynomial time for hyperbolic elements.

Theorem (Diekert, Miasnikov, W. 2014)

Conjugacy in the Baumslag group $\mathrm{BG}_{1,2}$ can be solved in polynomial time in a strongly generic setting by some algorithm which always stops and which has non-elementary average time complexity.

Conjecture

The conjugacy problem of $\mathbf{B G}_{1,2}$ is non-elementary on average.

Hence, there are natural problems / algorithms where average case complexity is meaningless! Because average case is not better than worst case and the worst case is useless.

Difficulty of the word problem in $\mathbf{B G}_{1,2}$

$\tau=$ tower function: $\quad \tau(0)=0, \quad \tau(n+1)=2^{\tau(n)}$.
Solving the word problem using Britton reductions:

$$
b a^{k} b^{-1} \rightarrow t^{k} \quad b^{-1} t^{k} b \rightarrow a^{k}
$$

leads to non-elementary blow-up.

Difficulty of the word problem in $\mathbf{B G}_{1,2}$

$$
\tau=\text { tower function: } \quad \tau(0)=0, \quad \tau(n+1)=2^{\tau(n)}
$$

Solving the word problem using Britton reductions:

$$
b a^{k} b^{-1} \rightarrow t^{k} \quad b^{-1} t^{k} b \rightarrow a^{k}
$$

leads to non-elementary blow-up. Define words w_{n} inductively such that $w_{n}=t^{\tau(n)}$ in $\mathbf{B G}_{1,2}$ for $n \geq 0$. More precisely, $w_{0}:=$ empty word. Then $w_{0}=1$ in $\mathbf{B G}_{1,2}$ and:

$$
\begin{aligned}
w_{n+1} & :=b \cdot w_{n} \cdot a \cdot w_{n}^{-1} \cdot b^{-1} \\
& =b \cdot t^{\tau(n)} \cdot a \cdot t^{-\tau(n)} \cdot b^{-1} \\
& =b \cdot a^{\tau(n+1)} \cdot b^{-1} \\
& =t^{\tau(n+1)}
\end{aligned}
$$

Difficulty of the word problem in $\mathbf{B G}_{1,2}$

$$
\tau=\text { tower function: } \quad \tau(0)=0, \quad \tau(n+1)=2^{\tau(n)}
$$

Solving the word problem using Britton reductions:

$$
b a^{k} b^{-1} \rightarrow t^{k} \quad b^{-1} t^{k} b \rightarrow a^{k}
$$

leads to non-elementary blow-up. Define words w_{n} inductively such that $w_{n}=t^{\tau(n)}$ in $\mathbf{B G}_{1,2}$ for $n \geq 0$. More precisely, $w_{0}:=$ empty word. Then $w_{0}=1$ in $\mathbf{B G}_{1,2}$ and:

$$
\begin{aligned}
w_{n+1} & :=b \cdot w_{n} \cdot a \cdot w_{n}^{-1} \cdot b^{-1} \\
& =b \cdot t^{\tau(n)} \cdot a \cdot t^{-\tau(n)} \cdot b^{-1} \\
& =b \cdot a^{\tau(n+1)} \cdot b^{-1} \\
& =t^{\tau(n+1)}
\end{aligned}
$$

$\left|w_{n}\right| \in 2^{\Theta(n)}$, but w_{n} is a huge compression for the number $\tau(n)$.

HNN extenstions of free abelian groups

For the word problem: use power circuits for high compression.

Algorithm for conjugacy for hyperbolic elements

- Reduce words cyclically using the algorithm by Miasnikov, Ushakov, Won.
- Check all cyclic permutations.
- For each cyclic permutation, compute a "cyclic" normal form.
- Use the word problem to check normal forms for equality.

HNN extenstions of free abelian groups

For the word problem: use power circuits for high compression.

Algorithm for conjugacy for hyperbolic elements

- Reduce words cyclically using the algorithm by Miasnikov, Ushakov, Won.
- Check all cyclic permutations.
- For each cyclic permutation, compute a "cyclic" normal form.
- Use the word problem to check normal forms for equality.

Problem for elliptic elements:

$$
\begin{aligned}
a^{r} t^{m} \sim a^{s} t^{q} \Longleftrightarrow & m=q \text { and } \exists k \in \mathbb{N}: 0 \leq k<m \text { such that } \\
& r \cdot 2^{k} \equiv s \bmod 2^{m}-1
\end{aligned}
$$

r, m, s, q extremely huge numbers given by power circuits.

Computer experiments

Portion of reduced words $w \in H$ over the alphabet $\{a, b, \bar{a}, \bar{b}\}$ with $|w|_{b}+|w|_{\bar{b}}=2 n$, sampling $11 \cdot 10^{9}$ words.

Summary

- Characterization of amenability of Schreier graphs of HNN extensions and amalgamated products.

Summary

- Characterization of amenability of Schreier graphs of HNN extensions and amalgamated products.
- Strongly generic polynomial time algorithms for conjugacy in $\mathbf{B G}_{1,2}$ and HNN extensions of f.g. free abelian groups.

Summary

- Characterization of amenability of Schreier graphs of HNN extensions and amalgamated products.
- Strongly generic polynomial time algorithms for conjugacy in $\mathbf{B G}_{1,2}$ and HNN extensions of f.g. free abelian groups.
- Strongly generic reduction from conjugacy to the word problem in more-than-one-ended groups.

Summary

- Characterization of amenability of Schreier graphs of HNN extensions and amalgamated products.
- Strongly generic polynomial time algorithms for conjugacy in $\mathbf{B G}_{1,2}$ and HNN extensions of f.g. free abelian groups.
- Strongly generic reduction from conjugacy to the word problem in more-than-one-ended groups.
Open questions:
- Refinement of generic complexity for conjugacy.

Summary

- Characterization of amenability of Schreier graphs of HNN extensions and amalgamated products.
- Strongly generic polynomial time algorithms for conjugacy in $\mathbf{B G}_{1,2}$ and HNN extensions of f.g. free abelian groups.
- Strongly generic reduction from conjugacy to the word problem in more-than-one-ended groups.
Open questions:
- Refinement of generic complexity for conjugacy.
- Other groups with easy conjugacy problem for hyperbolic elements (e.g. $\left\langle x_{1}, x_{2}, x_{3}, x_{4} \mid x_{i} x_{i-1} x_{i}=x_{i-1}^{2}\right\rangle$).

Summary

- Characterization of amenability of Schreier graphs of HNN extensions and amalgamated products.
- Strongly generic polynomial time algorithms for conjugacy in $\mathbf{B G}_{1,2}$ and HNN extensions of f.g. free abelian groups.
- Strongly generic reduction from conjugacy to the word problem in more-than-one-ended groups.
Open questions:
- Refinement of generic complexity for conjugacy.
- Other groups with easy conjugacy problem for hyperbolic elements (e.g. $\left\langle x_{1}, x_{2}, x_{3}, x_{4} \mid x_{i} x_{i-1} x_{i}=x_{i-1}^{2}\right\rangle$).
- more precise complexity bounds. Conjecture: algorithms for conjugacy in $\mathbf{B G}_{1,2}$ and HNN extensions of f.g. free abelian groups is efficiently parallelizable.

Summary

- Characterization of amenability of Schreier graphs of HNN extensions and amalgamated products.
- Strongly generic polynomial time algorithms for conjugacy in $\mathbf{B G}_{1,2}$ and HNN extensions of f.g. free abelian groups.
- Strongly generic reduction from conjugacy to the word problem in more-than-one-ended groups.
Open questions:
- Refinement of generic complexity for conjugacy.
- Other groups with easy conjugacy problem for hyperbolic elements (e.g. $\left\langle x_{1}, x_{2}, x_{3}, x_{4} \mid x_{i} x_{i-1} x_{i}=x_{i-1}^{2}\right\rangle$).
- more precise complexity bounds. Conjecture: algorithms for conjugacy in $\mathbf{B G}_{1,2}$ and HNN extensions of f.g. free abelian groups is efficiently parallelizable.
- Explicit bounds for strongly generic sets.

Summary

- Characterization of amenability of Schreier graphs of HNN extensions and amalgamated products.
- Strongly generic polynomial time algorithms for conjugacy in $\mathbf{B G}_{1,2}$ and HNN extensions of f.g. free abelian groups.
- Strongly generic reduction from conjugacy to the word problem in more-than-one-ended groups.
Open questions:
- Refinement of generic complexity for conjugacy.
- Other groups with easy conjugacy problem for hyperbolic elements (e.g. $\left\langle x_{1}, x_{2}, x_{3}, x_{4} \mid x_{i} x_{i-1} x_{i}=x_{i-1}^{2}\right\rangle$).
- more precise complexity bounds. Conjecture: algorithms for conjugacy in $\mathbf{B G}_{1,2}$ and HNN extensions of f.g. free abelian groups is efficiently parallelizable.
- Explicit bounds for strongly generic sets.

Thank you!

