TC⁰ computations and the subgroup membership problem in nilpotent groups

Armin Weiß

Stevens Institute of Technology

Manhattan Algebra Day, December 9, 2016

- Why circuit complexity for groups?
- Computing gcds
- Subgroup membership for nilpotent groups

Let G be a f.g. group, generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

- Word problem: Given $w \in \Sigma^*$. Question: Is w = 1 in G?
- Conjugacy problem: Given $v, w \in \Sigma^*$. Question: $\exists z \in G$ such that $zvz^{-1} = w$?
- (Uniform) Subgroup membership problem: Given $v, w_1, \ldots, w_n \in \Sigma^*$. Question: $v \in \langle w_1, \ldots, w_n \rangle$?

Let G be a f.g. group, generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

- Word problem: Given $w \in \Sigma^*$. Question: Is w = 1 in G?
- Conjugacy problem: Given $v, w \in \Sigma^*$. Question: $\exists z \in G$ such that $zvz^{-1} = w$?
- (Uniform) Subgroup membership problem: Given $v, w_1, \ldots, w_n \in \Sigma^*$. Question: $v \in \langle w_1, \ldots, w_n \rangle$?

Classification:

• Decidable vs. undecidable.

Let G be a f.g. group, generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

- Word problem: Given $w \in \Sigma^*$. Question: Is w = 1 in G?
- Conjugacy problem: Given $v, w \in \Sigma^*$. Question: $\exists z \in G$ such that $zvz^{-1} = w$?
- (Uniform) Subgroup membership problem: Given $v, w_1, \ldots, w_n \in \Sigma^*$. Question: $v \in \langle w_1, \ldots, w_n \rangle$?

- Decidable vs. undecidable.
- Complexity: e.g. primitive recursive, NP, polynomial time

Let G be a f.g. group, generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

- Word problem: Given $w \in \Sigma^*$. Question: Is w = 1 in G?
- Conjugacy problem: Given $v, w \in \Sigma^*$. Question: $\exists z \in G$ such that $zvz^{-1} = w$?
- (Uniform) Subgroup membership problem: Given $v, w_1, \ldots, w_n \in \Sigma^*$. Question: $v \in \langle w_1, \ldots, w_n \rangle$?

- Decidable vs. undecidable.
- Complexity: e.g. primitive recursive, NP, polynomial time Inside polynomial time:
 - linear time (e.g. WP/CP of hyperbolic groups)

Let G be a f.g. group, generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

- Word problem: Given $w \in \Sigma^*$. Question: Is w = 1 in G?
- Conjugacy problem: Given $v, w \in \Sigma^*$. Question: $\exists z \in G$ such that $zvz^{-1} = w$?
- (Uniform) Subgroup membership problem: Given $v, w_1, \ldots, w_n \in \Sigma^*$. Question: $v \in \langle w_1, \ldots, w_n \rangle$?

- Decidable vs. undecidable.
- Complexity: e.g. primitive recursive, NP, polynomial time Inside polynomial time:
 - linear time (e.g. WP/CP of hyperbolic groups)
 - LOGSPACE (e.g. WP of linear groups)

Let G be a f.g. group, generated by a finite set $\Sigma = \Sigma^{-1} \subseteq G$.

- Word problem: Given $w \in \Sigma^*$. Question: Is w = 1 in G?
- Conjugacy problem: Given $v, w \in \Sigma^*$. Question: $\exists z \in G$ such that $zvz^{-1} = w$?
- (Uniform) Subgroup membership problem: Given $v, w_1, \ldots, w_n \in \Sigma^*$. Question: $v \in \langle w_1, \ldots, w_n \rangle$?

- Decidable vs. undecidable.
- Complexity: e.g. primitive recursive, NP, polynomial time Inside polynomial time:
 - linear time (e.g. WP/CP of hyperbolic groups)
 - LOGSPACE (e.g. WP of linear groups)
 - parallel complexity

Why parallel complexity?

• Finer classification of problems inside polynomial time.

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.
- Parallel computing is more and more important in the "real world":
 - while clock frequencies almost do not increase anymore

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.
- Parallel computing is more and more important in the "real world":
 - while clock frequencies almost do not increase anymore
 - 4 cores on most desktop processors

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.
- Parallel computing is more and more important in the "real world":
 - while clock frequencies almost do not increase anymore
 - 4 cores on most desktop processors
 - \bullet > 2000 cores on high-end graphics devices

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.
- Parallel computing is more and more important in the "real world":
 - while clock frequencies almost do not increase anymore
 - 4 cores on most desktop processors
 - \bullet > 2000 cores on high-end graphics devices
 - \bullet > 10⁶ cores on supercomputers

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.
- Parallel computing is more and more important in the "real world":
 - while clock frequencies almost do not increase anymore
 - 4 cores on most desktop processors
 - \bullet > 2000 cores on high-end graphics devices
 - $\bullet \ > 10^6$ cores on supercomputers

Machine models:

- parallel RAMs (random access machines)
- (Boolean) circuits

Machine models:

- parallel RAMs (random access machines)
- (Boolean) circuits

Circuit = directed acyclic graph where each vertex is either:

- input gates (has only outgoing edges)
- Boolean gates (and ∧, or ∨, not ¬ having incoming and outgoing edges)
- output gates (only incoming edges)

Machine models:

- parallel RAMs (random access machines)
- (Boolean) circuits

Circuit = directed acyclic graph where each vertex is either:

- input gates (has only outgoing edges)
- Boolean gates (and ∧, or ∨, not ¬ having incoming and outgoing edges)
- output gates (only incoming edges)

Machine models:

- parallel RAMs (random access machines)
- (Boolean) circuits

 $\label{eq:circuit} \mbox{Circuit} = \mbox{directed} \mbox{ acyclic graph where each vertex is either:}$

- input gates (has only outgoing edges)
- Boolean gates (and ∧, or ∨, not ¬ having incoming and outgoing edges)
- output gates (only incoming edges)

size = number of gates

depth = longest path from input to output gate

 $\mathsf{NC}=\mathsf{problems}$ which can be solved by a family of circuits of polynomial size and polylogarithmic depth

= problems which can be solved by a parallel RAM with a polynomial number of processors in polylogarithmic time.

Inside NC:

 NCⁱ = solved by a family of circuits of depth O(logⁱ n) and polynomial size with bounded fan-in (= in-degree) ¬, ∧, ∨ gates.

Inside NC:

 NCⁱ = solved by a family of circuits of depth O(logⁱ n) and polynomial size with bounded fan-in (= in-degree) ¬, ∧, ∨ gates.

Infinite hierarchy:

$$\mathsf{NC}^1 \subseteq \mathsf{LOGSPACE} \subseteq \mathsf{NC}^2 \subseteq \mathsf{NC}^3 \subseteq \cdots \subseteq \mathsf{NC} \subseteq \mathsf{P}.$$

Inside NC:

 NCⁱ = solved by a family of circuits of depth O(logⁱ n) and polynomial size with bounded fan-in (= in-degree) ¬, ∧, ∨ gates.

Infinite hierarchy:

$$\mathsf{NC}^1 \subseteq \mathsf{LOGSPACE} \subseteq \mathsf{NC}^2 \subseteq \mathsf{NC}^3 \subseteq \cdots \subseteq \mathsf{NC} \subseteq \mathsf{P}.$$

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)

The word problem of linear groups is in LOGSPACE.

"Proof": Given matrices A_1, \ldots, A_n , compute

 $\prod A_i \mod p$

for sufficiently many primes p.

Inside NC^1 :

 AC⁰ = solved by a family of circuits of constant depth and polynomial size with unbounded fan-in ¬, ∧, ∨ gates.

Inside NC^1 :

- AC⁰ = solved by a family of circuits of constant depth and polynomial size with unbounded fan-in ¬, ∧, ∨ gates.
- TC⁰ allows additionally majority gates: Maj(w) = 1 iff |w|₁ ≥ |w|₀ for w ∈ {0,1}^{*}.

Theorem (Robinson, 1993)

The word problem of

- Baumslag-Solitar groups $\boldsymbol{\mathsf{BS}}_{1,q}$ and
- nilpotent groups

are uniform TC⁰-complete.

More problems in TC^0 :

- conjugacy problem in $\mathbf{BS}_{1,q}$ (Diekert, Myasnikov, W., 2014)
- word problem in solvable linear groups (König, Lohrey, 2015)
- word and conjugacy problem in free solvable groups (Myasnikov, Vassileva, W., 2016)

Word problem of $\ensuremath{\mathbb{Z}}$

The word problem of \mathbb{Z} with generators $\{+1, -1\}$ is in TC⁰.

Word problem of $\mathbb Z$

The word problem of \mathbb{Z} with generators $\{+1, -1\}$ is in TC⁰.

Use 0 to encode -1 and 1 for 1.

Word problem of $\mathbb Z$

The word problem of \mathbb{Z} with generators $\{+1, -1\}$ is in TC⁰.

Use 0 to encode -1 and 1 for 1. Let $w \in \{0,1\}^*$,

$$w$$
 represents 0 in $\mathbb{Z} \iff |w|_1 = |w|_0$
 $\iff \operatorname{Maj}(w) \land \operatorname{Maj}(\neg w)$

Word problem of \mathbb{Z}

The word problem of \mathbb{Z} with generators $\{+1, -1\}$ is in TC⁰.

Use 0 to encode -1 and 1 for 1. Let $w \in \{0,1\}^*$,

$$w ext{ represents 0 in } \mathbb{Z} \iff |w|_1 = |w|_0$$

 $\iff ext{Maj}(w) \land ext{Maj}(\neg w)$

Arithmetic problems in TC⁰¹

Iterated Addition

- input: *n*-bit numbers r_1, \ldots, r_n ,
- compute $\sum_{i=1}^{n} r_i$.

Arithmetic problems in TC⁰¹

Iterated Addition

- input: *n*-bit numbers r_1, \ldots, r_n ,
- compute $\sum_{i=1}^{n} r_i$.

Iterated Addition is in TC^0 .

Arithmetic problems in TC⁰

Iterated Addition

- input: *n*-bit numbers r_1, \ldots, r_n ,
- compute $\sum_{i=1}^{n} r_i$.

Iterated Addition is in TC^0 .

Iterated Multiplication

- input: *n*-bit numbers r_1, \ldots, r_n ,
- compute $\prod_{i=1}^{n} r_i$.

Integer Division

- input: *n*-bit numbers *a*, *b*,
- compute $\left\lfloor \frac{a}{b} \right\rfloor$.

Arithmetic problems in TC⁰

Iterated Addition

- input: *n*-bit numbers r_1, \ldots, r_n ,
- compute $\sum_{i=1}^{n} r_i$.

Iterated Addition is in TC⁰.

Iterated Multiplication

- input: *n*-bit numbers r_1, \ldots, r_n ,
- compute $\prod_{i=1}^{n} r_i$.

Integer Division

- input: *n*-bit numbers *a*, *b*,
- compute $\left\lfloor \frac{a}{b} \right\rfloor$.

Theorem (Hesse, 2001)

Iterated Multiplication and Integer Division are in TC⁰.

Armin Weiß

Reductions

- For a formal language $L \subseteq \{0,1\}^*$, $AC^0(L)$ allows additionally oracle gates for L.
- $L' \in AC^0(L)$ means L' is AC^0 -reducible to L.
- Every problem in TC^0 is AC^0 -reducible to Majority.

 \rightsquigarrow Majority is TC⁰-complete.

Reductions

- For a formal language L ⊆ { 0, 1 }*, AC⁰(L) allows additionally oracle gates for L.
- $L' \in AC^0(L)$ means L' is AC^0 -reducible to L.
- Every problem in TC^0 is AC^0 -reducible to Majority. \rightsquigarrow Majority is TC^0 -complete.

The word problem of \mathbb{Z} with generators $\{+1, -1\}$ is TC⁰-complete.

Again, 1 encodes 1 and 0 encodes -1. For $u \in \{0, 1\}^*$:

$$\begin{array}{ll} \mathrm{Maj}(u) \iff |u|_1 \ge |u|_0 \\ \iff \bigvee_{0 \le i \le |u|} |u0^i|_1 = |u0^i|_0 \\ \iff \bigvee_{0 \le i \le |u|} (u0^i \text{ represents 0 in } \mathbb{Z}) \end{array}$$

Reductions

- For a formal language L ⊆ { 0, 1 }*, AC⁰(L) allows additionally oracle gates for L.
- $L' \in AC^0(L)$ means L' is AC^0 -reducible to L.
- Every problem in TC^0 is AC^0 -reducible to Majority. \rightsquigarrow Majority is TC^0 -complete.

•
$$\mathsf{TC}^0 = \mathsf{AC}^0(\mathrm{WP}(\mathbb{Z})) \subseteq \mathsf{AC}^0(\mathrm{WP}(F_2))$$

• $AC^{0}(WP(F_{2})) \subseteq LOGSPACE$

Overview: small circuit classes

AC ⁰	= FO(+,*)	$\mathbb{Z}/n\mathbb{Z}$ with one monoid generator
ACC ⁰	$= FO(+,*;\operatorname{Mod})$	finite solvable
TC ⁰	$= FO(+,*;\mathrm{Maj})$	\mathbb{Z} , linear solvable (e.g. nilpotent), free solvable
$NC^1 = AC^0(\mathrm{WP}(A_5))$		finite non-solvable, regular languages
$AC^0(WP(F_2))$		virtually free, Baumslag-Solitar groups, RAAGs, free products
LOGSPACE		linear groups
NC		hyperbolic groups
Ρ	polynomial time	compressed word problem of free groups, etc.
Why compute greatest common divisors?

Why compute greatest common divisors?

Subgroup membership problem of \mathbb{Z} :
Given $a, a_1, \ldots, a_n \in \mathbb{Z}$, is $a \in \langle a_1, \ldots, a_n \rangle$? With other words are there $x_1, \ldots, x_n \in \mathbb{Z}$ with
$a = x_1 a_1 + \cdots + x_n a_n?$

Why compute greatest common divisors?

Subgroup membership problem of \mathbb{Z} :

Given $a, a_1, \ldots, a_n \in \mathbb{Z}$, is $a \in \langle a_1, \ldots, a_n \rangle$? With other words are there $x_1, \ldots, x_n \in \mathbb{Z}$ with

$$a = x_1a_1 + \cdots + x_na_n?$$

Clearly, $a \in \langle a_1, \ldots, a_n \rangle$ iff $gcd(a_1, \ldots, a_n) \mid a$.

Observation

If $a_1, \ldots, a_n \in \mathbb{Z}$ are given in unary $(a_i \text{ is represented by } \underbrace{11\cdots 1}_{a_i \text{ many}} 0\cdots 0)$, then the gcd can be computed in TC⁰.

Observation

If $a_1, \ldots, a_n \in \mathbb{Z}$ are given in unary $(a_i \text{ is represented by } \underbrace{11\cdots 1}_{a_i \text{ many}} 0\cdots 0)$, then the gcd can be computed in TC⁰.

Proof

Let $m = \max\{|a_i|\}$. For all $d \le m$ do the following:

 check for all *i* whether there is some c_i ≤ m with dc_i = a_i (by trying all possible values -m ≤ c_i ≤ m)

Observation

If $a_1, \ldots, a_n \in \mathbb{Z}$ are given in unary $(a_i \text{ is represented by } \underbrace{11\cdots 1}_{a_i \text{ many}} 0\cdots 0)$, then the gcd can be computed in TC⁰.

Proof

Let $m = \max\{|a_i|\}$. For all $d \le m$ do the following:

 check for all *i* whether there is some c_i ≤ m with dc_i = a_i (by trying all possible values -m ≤ c_i ≤ m)

The largest d for which there are such c_i is the gcd.

Observation

If $a_1, \ldots, a_n \in \mathbb{Z}$ are given in unary $(a_i \text{ is represented by } \underbrace{11\cdots 1}_{a_i \text{ many}} 0\cdots 0)$, then the gcd can be computed in TC⁰.

Proof

Let $m = \max\{|a_i|\}$. For all $d \le m$ do the following:

 check for all *i* whether there is some c_i ≤ m with dc_i = a_i (by trying all possible values -m ≤ c_i ≤ m)

The largest *d* for which there are such c_i is the gcd. This requires $2nm^2$ multiplications – all of them can be done in parallel – and one computation of the maximum.

Observation

If $a_1, \ldots, a_n \in \mathbb{Z}$ are given in unary $(a_i \text{ is represented by } \underbrace{11\cdots 1}_{a_i \text{ many}} 0\cdots 0)$, then the gcd can be computed in TC⁰.

Proof

Let $m = \max\{|a_i|\}$. For all $d \le m$ do the following:

 check for all *i* whether there is some c_i ≤ m with dc_i = a_i (by trying all possible values -m ≤ c_i ≤ m)

The largest *d* for which there are such c_i is the gcd. This requires $2nm^2$ multiplications – all of them can be done in

parallel - and one computation of the maximum.

Corollary

The subgroup membership problem of \mathbb{Z} (where group elements are given as words over the generators) is in TC^0 .

Subgroup membership problem of \mathbb{Z}^2 :

Given $a, b, a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{Z}$, is $(a, b) \in \langle (a_1, b_1), \ldots, (a_n, b_n) \rangle$? With other words are there $x_1, \ldots, x_n \in \mathbb{Z}$ with

 $a = x_1a_1 + \cdots + x_na_n$ and $b = x_1b_1 + \cdots + x_nb_n$?

Subgroup membership problem of \mathbb{Z}^2 :

Given $a, b, a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{Z}$, is $(a, b) \in \langle (a_1, b_1), \ldots, (a_n, b_n) \rangle$? With other words are there $x_1, \ldots, x_n \in \mathbb{Z}$ with

 $a = x_1a_1 + \cdots + x_na_n$ and $b = x_1b_1 + \cdots + x_nb_n$?

(1) Compute $d = \text{gcd}(a_1, \ldots, a_n)$ and check whether $d \nmid a$.

Subgroup membership problem of \mathbb{Z}^2 :

Given $a, b, a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{Z}$, is $(a, b) \in \langle (a_1, b_1), \ldots, (a_n, b_n) \rangle$? With other words are there $x_1, \ldots, x_n \in \mathbb{Z}$ with

 $a = x_1a_1 + \dots + x_na_n$ and $b = x_1b_1 + \dots + x_nb_n$?

Compute d = gcd(a₁,..., a_n) and check whether d ∤ a.
 Compute y₁,..., y_n ∈ Z with d = y₁a₁ + ··· + y_na_n

Subgroup membership problem of \mathbb{Z}^2 :

Given $a, b, a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{Z}$, is $(a, b) \in \langle (a_1, b_1), \ldots, (a_n, b_n) \rangle$? With other words are there $x_1, \ldots, x_n \in \mathbb{Z}$ with

 $a = x_1a_1 + \cdots + x_na_n$ and $b = x_1b_1 + \cdots + x_nb_n$?

Subgroup membership problem of \mathbb{Z}^2 :

Given $a, b, a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{Z}$, is $(a, b) \in \langle (a_1, b_1), \ldots, (a_n, b_n) \rangle$? With other words are there $x_1, \ldots, x_n \in \mathbb{Z}$ with

 $a = x_1a_1 + \cdots + x_na_n$ and $b = x_1b_1 + \cdots + x_nb_n$?

- (1) Compute $d = gcd(a_1, \ldots, a_n)$ and check whether $d \nmid a$.
- (2) Compute $y_1, \ldots, y_n \in \mathbb{Z}$ with $d = y_1 a_1 + \cdots + y_n a_n$
- (3) Add a new pair (a_{n+1}, b_{n+1}) with $a_{n+1} = d$ and $b_{n+1} = y_1b_1 + \cdots + y_nb_n$.
- (4) Subtract from all the other pairs multiples of (a_{n+1}, b_{n+1}) , to make the first component zero:

$$(a'_i, b'_i) = (a_i, b_i) - \frac{a_i}{a_{n+1}}(a_{n+1}, b_{n+1})$$

Subgroup membership problem of \mathbb{Z}^2 :

Given $a, b, a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{Z}$, is $(a, b) \in \langle (a_1, b_1), \ldots, (a_n, b_n) \rangle$? With other words are there $x_1, \ldots, x_n \in \mathbb{Z}$ with

 $a = x_1a_1 + \cdots + x_na_n$ and $b = x_1b_1 + \cdots + x_nb_n$?

- (1) Compute $d = gcd(a_1, \ldots, a_n)$ and check whether $d \nmid a$.
- (2) Compute $y_1, \ldots, y_n \in \mathbb{Z}$ with $d = y_1 a_1 + \cdots + y_n a_n$
- (3) Add a new pair (a_{n+1}, b_{n+1}) with $a_{n+1} = d$ and $b_{n+1} = y_1b_1 + \cdots + y_nb_n$.
- (4) Subtract from all the other pairs multiples of (a_{n+1}, b_{n+1}) , to make the first component zero:

$$(a'_i, b'_i) = (a_i, b_i) - \frac{a_i}{a_{n+1}}(a_{n+1}, b_{n+1})$$

(5) Set $b' = b - \frac{a}{a_{n+1}}b_{n+1}$ and check whether there are $x'_1, \ldots, x'_n \in \mathbb{Z}$ such that $b' = x'_1b'_1 + \cdots + x'_nb'_n$

Question

Given $a_1, \ldots, a_n \in \mathbb{Z}$ encoded in unary. Can $x_1, \ldots, x_n \in \mathbb{Z}$ (in unary) with $d = x_1a_1 + \cdots + x_na_n$ be computed in TC⁰?

Given $a_1, \ldots, a_n \in \mathbb{Z}$ encoded in unary. Can $x_1, \ldots, x_n \in \mathbb{Z}$ (in unary) with $d = x_1a_1 + \cdots + x_na_n$ be computed in TC⁰?

If $a_1, \ldots, a_n \in \mathbb{Z}$ are encoded in binary,

- it is not known whether the gcd can be computed in NC.
- finding the smallest x₁,..., x_n ∈ Z is NP-complete (Majewski, Havas, 1994).

Given $a_1, \ldots, a_n \in \mathbb{Z}$ encoded in unary. Can $x_1, \ldots, x_n \in \mathbb{Z}$ (in unary) with $d = x_1a_1 + \cdots + x_na_n$ be computed in TC⁰?

Straightforward solution (try all possible values) does not work because there are too many:

Given $a_1, \ldots, a_n \in \mathbb{Z}$ encoded in unary. Can $x_1, \ldots, x_n \in \mathbb{Z}$ (in unary) with $d = x_1a_1 + \cdots + x_na_n$ be computed in TC⁰?

Straightforward solution (try all possible values) does not work because there are too many: Let $m = \max\{|a_i|\}$. There are $x_1, \ldots, x_n \in \mathbb{Z}$ with $|x_i| \le m/2$ – this is the best known upper bound (Majewski, Havas, 1994).

 \rightsquigarrow *mⁿ* possible choices for the *x_i* to try.

Given $a_1, \ldots, a_n \in \mathbb{Z}$ encoded in unary. Can $x_1, \ldots, x_n \in \mathbb{Z}$ (in unary) with $d = x_1a_1 + \cdots + x_na_n$ be computed in TC⁰?

Straightforward solution (try all possible values) does not work because there are too many: Let $m = \max\{|a_i|\}$. There are $x_1, \ldots, x_n \in \mathbb{Z}$ with $|x_i| \le m/2$ – this is the best known upper bound (Majewski, Havas, 1994).

 \rightsquigarrow *mⁿ* possible choices for the *x_i* to try.

However, if n = 2, there are only m^2 many values to try $\rightsquigarrow TC^0$. We can use this idea to compute x_1, \ldots, x_n in TC^0 :

First, set $d_0 = 0$ compute

$$d_i = \gcd(a_1, \ldots, a_i)$$
 for $i = 1, \ldots, n$

$$\rightsquigarrow$$
 $d_i = \gcd(d_{i-1}, a_i).$

For each *i*, compute integers y_i and z_i such that $d_i = y_i d_{i-1} + z_i a_i$. Next compute

$$x_i = z_i \cdot \prod_{j=i+1}^n y_j$$

in TC^0 using iterated multiplication. Now, we have

$$x_1a_1+\cdots+x_na_n=\gcd(a_1,\ldots,a_n).$$

First, set $d_0 = 0$ compute

$$d_i = \gcd(a_1, \ldots, a_i)$$
 for $i = 1, \ldots, n$

$$\rightsquigarrow$$
 $d_i = \gcd(d_{i-1}, a_i).$

For each *i*, compute integers y_i and z_i such that $d_i = y_i d_{i-1} + z_i a_i$. Next compute

$$x_i = z_i \cdot \prod_{j=i+1}^n y_j$$

in TC⁰ using iterated multiplication. Now, we have

$$x_1a_1+\cdots+x_na_n=\gcd(a_1,\ldots,a_n).$$

Problem: can compute the x_i only in binary in TC⁰.

First, set $d_0 = 0$ compute

$$d_i = \gcd(a_1, \ldots, a_i)$$
 for $i = 1, \ldots, n$

$$\rightsquigarrow$$
 $d_i = \gcd(d_{i-1}, a_i).$

For each *i*, compute integers y_i and z_i such that $d_i = y_i d_{i-1} + z_i a_i$. Next compute

$$x_i = z_i \cdot \prod_{j=i+1}^n y_j$$

in TC⁰ using iterated multiplication. Now, we have

$$x_1a_1+\cdots+x_na_n=\gcd(a_1,\ldots,a_n).$$

Problem: can compute the x_i only in binary in TC⁰. \rightarrow we have to make them smaller.

Armin Weiß

How to make them small?

How to make them small?

```
If n = 2, this is easy:
Assume a, b > 0 and ax + by = gcd(a, b) with x \ge b. Set p = \lfloor \frac{x}{b} \rfloor and replace
```

- x by x bp and
- y by y + ap.

How to make them small?

If n = 2, this is easy: Assume a, b > 0 and ax + by = gcd(a, b) with $x \ge b$. Set $p = \lfloor \frac{x}{b} \rfloor$ and replace

- x by x bp and
- y by y + ap.

If n > 2, we can apply this method for selected pairs in parallel.

How to make them small?

If n = 2, this is easy: Assume a, b > 0 and ax + by = gcd(a, b) with $x \ge b$. Set $p = \lfloor \frac{x}{b} \rfloor$ and replace

- x by x bp and
- y by y + ap.

If n > 2, we can apply this method for selected pairs in parallel.

For which pairs?

• Blocks of size max $\{a_i^2\}$

- Blocks of size max $\{a_i^2\}$
- Using iterated addition, we can compute how many blocks from column *i* should go to column *j* in TC⁰.

- Blocks of size max $\{a_i^2\}$
- Using iterated addition, we can compute how many blocks from column *i* should go to column *j* in TC⁰.
- Use idea for *n* = 2 to approximate blocks moved from column *i* to column *j*.

Theorem (Myasnikov, W., 2016)

There is a family of TC^0 circuits for the following problem: given $a_1, \ldots, a_n \in \mathbb{Z}$ encoded in unary, compute $x_1, \ldots, x_n \in \mathbb{Z}$ in unary with $d = x_1a_1 + \cdots + x_na_n$.

Theorem (Myasnikov, W., 2016)

There is a family of TC^0 circuits for the following problem: given $a_1, \ldots, a_n \in \mathbb{Z}$ encoded in unary, compute $x_1, \ldots, x_n \in \mathbb{Z}$ in unary with $d = x_1 a_1 + \cdots + x_n a_n$.

Corollary

Let G be a free abelian group. Then the subgroup membership problem for G is in TC^0 .

Definition

A group G is nilpotent of class c if $G = \Gamma_1(G) \ge \Gamma_2(G) \ge \cdots \Gamma_c(G) > \Gamma_{c+1}(G) = \{1\}$ where $\Gamma_{i+1} = [\Gamma_i, G] = \langle x^{-1}g^{-1}xg \text{ for } x \in \Gamma_i, g \in G \rangle.$

Definition

A group G is nilpotent of class c if $G = \Gamma_1(G) \ge \Gamma_2(G) \ge \cdots \Gamma_c(G) > \Gamma_{c+1}(G) = \{1\}$ where $\Gamma_{i+1} = [\Gamma_i, G] = \langle x^{-1}g^{-1}xg \text{ for } x \in \Gamma_i, g \in G \rangle.$
Definition

A group G is nilpotent of class c if $G = \Gamma_1(G) \ge \Gamma_2(G) \ge \cdots \Gamma_c(G) > \Gamma_{c+1}(G) = \{1\}$ where $\Gamma_{i+1} = [\Gamma_i, G] = \langle x^{-1}g^{-1}xg \text{ for } x \in \Gamma_i, g \in G \rangle.$

Theorem (Macdonald, Myasnikov, Nikolaev, Vassileva, 2015)

Let G be a nilpotent group. The (uniform) subgroup membership problem for G is in LOGSPACE.

The proof is based on so-called matrix reduction (Sims, 1994).

Mal'cev coordinates

Let G be a nilpotent group with Mal'cev basis $(a_1, \ldots, a_m) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g = a_1^{x_1} \cdots a_m^{x_m} =: \vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_m) \in \mathbb{Z}^n$ (if there is torsion some of them are restricted $0 \le x_i < e_i$) and such that

$$[a_i, a_j] \in \left\langle a_{\max\{i, j\}+1}, \ldots, a_m \right\rangle.$$

Mal'cev coordinates

Let G be a nilpotent group with Mal'cev basis $(a_1, \ldots, a_m) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g = a_1^{x_1} \cdots a_m^{x_m} =: \vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_m) \in \mathbb{Z}^n$ (if there is torsion some of them are restricted $0 \le x_i < e_i$) and such that

$$[a_i, a_j] \in \left\langle a_{\max\{i, j\}+1}, \ldots, a_m \right\rangle.$$

• The product of two elements can be written in the same fashion

$$a_1^{x_1}\cdots a_m^{x_m}\cdot a_1^{y_1}\cdots a_m^{y_m}=a_1^{q_1}\cdots a_m^{q_m}.$$

The exponents q_1, \ldots, q_m are functions of x_1, \ldots, x_m and y_1, \ldots, y_m – if G is torsion-free they are polynomials.

Mal'cev coordinates

Let G be a nilpotent group with Mal'cev basis $(a_1, \ldots, a_m) = \vec{a}$.

• Each $g \in G$ has a unique normal form

$$g = a_1^{x_1} \cdots a_m^{x_m} =: \vec{a}^{\vec{x}}$$

with $\vec{x} = (x_1, \dots, x_m) \in \mathbb{Z}^n$ (if there is torsion some of them are restricted $0 \le x_i < e_i$) and such that

$$[a_i, a_j] \in \left\langle a_{\max\{i, j\}+1}, \ldots, a_m \right\rangle.$$

• The product of two elements can be written in the same fashion

$$a_1^{\mathbf{x}_1}\cdots a_m^{\mathbf{x}_m}\cdot a_1^{\mathbf{y}_1}\cdots a_m^{\mathbf{y}_m}=a_1^{q_1}\cdots a_m^{q_m}.$$

The exponents q_1, \ldots, q_m are functions of x_1, \ldots, x_m and y_1, \ldots, y_m – if *G* is torsion-free they are polynomials.

Fact $q_i(0,\ldots,0,x_i,\ldots,x_m,y_1,\ldots,y_m) = x_i + y_i \pmod{e_i}$

Matrix reduction

Let (h_1, \ldots, h_n) be generators of a subgroup *H*. We associate a matrix of coordinates

$$A = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1m} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nm} \end{pmatrix},$$

where $(\alpha_{i1}, \ldots \alpha_{im})$ are the Mal'cev coordinate of h_i .

Let (h_1, \ldots, h_n) be generators of a subgroup *H*. We associate a matrix of coordinates

$$A = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1m} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nm} \end{pmatrix},$$

where $(\alpha_{i1}, \ldots \alpha_{im})$ are the Mal'cev coordinate of h_i .

We do "Gaussian elimination" until we reach a matrix satisfying (here, π_i is the position of the *i*-th pivot = first non-zero entry in row *i*):

(i)
$$\pi_1 < \pi_2 < \ldots < \pi_s$$
 (where *s* is the number of pivots),

(ii)
$$\alpha_{i\pi_i} > 0$$
, for all $i = 1, ..., n$,

(iii)
$$0 \le \alpha_{k\pi_i} < \alpha_{i\pi_i}$$
, for all $1 \le k < i \le s$

(iv) if
$$e_{\pi_i} < \infty$$
, then $\alpha_{i\pi_i}$ divides e_{π_i} , for $i = 1, \ldots, s$.

(v)
$$H \cap \langle a_i, a_{i+1}, \dots, a_m \rangle$$
 is generated by $\{h_j \mid \pi_j \ge i\}$, for all $1 \le i \le m$.

Let (h_1, \ldots, h_n) be generators of a subgroup *H*. We associate a matrix of coordinates

$$A = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1m} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nm} \end{pmatrix},$$

where $(\alpha_{i1}, \ldots \alpha_{im})$ are the Mal'cev coordinate of h_i .

We do "Gaussian elimination" until we reach a matrix satisfying (here, π_i is the position of the *i*-th pivot = first non-zero entry in row *i*):

(i)
$$\pi_1 < \pi_2 < \ldots < \pi_s$$
 (where *s* is the number of pivots),

(ii)
$$\alpha_{i\pi_i} > 0$$
, for all $i = 1, ..., n$,

(iii)
$$0 \le \alpha_{k\pi_i} < \alpha_{i\pi_i}$$
, for all $1 \le k < i \le s$

(iv) if
$$e_{\pi_i} < \infty$$
, then $\alpha_{i\pi_i}$ divides e_{π_i} , for $i = 1, \ldots, s$.

(v) $H \cap \langle a_i, a_{i+1}, \dots, a_m \rangle$ is generated by $\{h_j \mid \pi_j \ge i\}$, for all $1 \le i \le m$.

Let $G = \langle a_1, a_2, a_3 | [a_1, a_3] = [a_2, a_3] = 1$, $[a_1, a_2] = a_3 \rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_1, a_2, a_3) . Let $H = \langle h_1, h_2 \rangle$ with

$$h_1 = a_1^6 a_2^2 a_3, \qquad h_2 = a_1^4 a_2^2.$$

Let $G = \langle a_1, a_2, a_3 | [a_1, a_3] = [a_2, a_3] = 1$, $[a_1, a_2] = a_3 \rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_1, a_2, a_3) . Let $H = \langle h_1, h_2 \rangle$ with

$$h_1 = a_1^6 a_2^2 a_3, \qquad \qquad h_2 = a_1^4 a_2^2.$$

$$A=\left(egin{array}{ccc} 6&2&1\4&2&0\end{array}
ight).$$

Let $G = \langle a_1, a_2, a_3 | [a_1, a_3] = [a_2, a_3] = 1$, $[a_1, a_2] = a_3 \rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_1, a_2, a_3) . Let $H = \langle h_1, h_2 \rangle$ with

$$h_1 = a_1^6 a_2^2 a_3, \qquad \qquad h_2 = a_1^4 a_2^2.$$

The associated matrix is

$$A = \left(\begin{array}{rrr} 6 & 2 & 1 \\ 4 & 2 & 0 \end{array}\right).$$

• Compute gcd(6, 4) = 2 = 6 - 4.

Let $G = \langle a_1, a_2, a_3 | [a_1, a_3] = [a_2, a_3] = 1$, $[a_1, a_2] = a_3 \rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_1, a_2, a_3) . Let $H = \langle h_1, h_2 \rangle$ with

$$h_1 = a_1^6 a_2^2 a_3, \qquad \qquad h_2 = a_1^4 a_2^2.$$

$$A = \left(\begin{array}{rrr} 6 & 2 & 1 \\ 4 & 2 & 0 \end{array}\right).$$

- Compute gcd(6, 4) = 2 = 6 − 4.
- Add a new row corresponding to $h_4 = h_1 h_2^{-1}$.

Let $G = \langle a_1, a_2, a_3 | [a_1, a_3] = [a_2, a_3] = 1$, $[a_1, a_2] = a_3 \rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_1, a_2, a_3) . Let $H = \langle h_1, h_2 \rangle$ with

$$h_1 = a_1^6 a_2^2 a_3, \qquad \qquad h_2 = a_1^4 a_2^2.$$

$$A = \left(\begin{array}{rrr} 6 & 2 & 1 \\ 4 & 2 & 0 \end{array}\right).$$

- Compute gcd(6, 4) = 2 = 6 − 4.
- Add a new row corresponding to $h_4 = h_1 h_2^{-1} = a_1^6 a_2^2 a_3 (a_1^4 a_2^2)^{-1}$.

Let $G = \langle a_1, a_2, a_3 | [a_1, a_3] = [a_2, a_3] = 1$, $[a_1, a_2] = a_3 \rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_1, a_2, a_3) . Let $H = \langle h_1, h_2 \rangle$ with

$$h_1 = a_1^6 a_2^2 a_3, \qquad h_2 = a_1^4 a_2^2.$$

$$A = \left(\begin{array}{rrr} 6 & 2 & 1 \\ 4 & 2 & 0 \end{array}\right).$$

- Compute gcd(6, 4) = 2 = 6 − 4.
- Add a new row corresponding to $h_4 = h_1 h_2^{-1} = a_1^6 a_2^2 a_3 a_1^{-4} a_2^{-2} a_3^{-8}$.

Let $G = \langle a_1, a_2, a_3 | [a_1, a_3] = [a_2, a_3] = 1$, $[a_1, a_2] = a_3 \rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_1, a_2, a_3) . Let $H = \langle h_1, h_2 \rangle$ with

$$h_1 = a_1^6 a_2^2 a_3, \qquad \qquad h_2 = a_1^4 a_2^2.$$

The associated matrix is

$$A = \left(\begin{array}{rrr} 6 & 2 & 1 \\ 4 & 2 & 0 \end{array}\right).$$

• Add a new row corresponding to $h_4 = h_1 h_2^{-1} = a_1^2 a_2^{-2} a_3^1$.

$$\left(\begin{array}{rrrr}
6 & 2 & 1 \\
4 & 2 & 0 \\
2 & 0 & 1
\end{array}\right)$$

Let $G = \langle a_1, a_2, a_3 | [a_1, a_3] = [a_2, a_3] = 1$, $[a_1, a_2] = a_3 \rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_1, a_2, a_3) . Let $H = \langle h_1, h_2 \rangle$ with

$$h_1 = a_1^6 a_2^2 a_3, \qquad \qquad h_2 = a_1^4 a_2^2.$$

$$A = \left(\begin{array}{rrr} 6 & 2 & 1 \\ 4 & 2 & 0 \end{array}\right).$$

- Compute gcd(6, 4) = 2 = 6 4.
- Add a new row corresponding to $h_4 = h_1 h_2^{-1} = a_1^2 a_2^{-2} a_3^1$.
- Replace h_1 by $h_1' = h_1 h_4^{-3}$ and h_2 by $h_2' = h_2 h_4^{-2}$

$$\left(\begin{array}{rrrr}
6 & 2 & 1 \\
4 & 2 & 0 \\
2 & 0 & 1
\end{array}\right)$$

Let $G = \langle a_1, a_2, a_3 | [a_1, a_3] = [a_2, a_3] = 1$, $[a_1, a_2] = a_3 \rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_1, a_2, a_3) . Let $H = \langle h_1, h_2 \rangle$ with

$$h_1 = a_1^6 a_2^2 a_3, \qquad \qquad h_2 = a_1^4 a_2^2.$$

$$A = \left(\begin{array}{rrr} 6 & 2 & 1 \\ 4 & 2 & 0 \end{array}\right).$$

- Compute gcd(6, 4) = 2 = 6 − 4.
- Add a new row corresponding to $h_4 = h_1 h_2^{-1} = a_1^2 a_2^{-2} a_3^1$.
- Replace h_1 by $h_1' = h_1 h_4^{-3}$ and h_2 by $h_2' = h_2 h_4^{-2}$

$$\left(\begin{array}{rrr} 0 & 2 & -6 \\ 0 & 2 & -6 \\ 2 & 0 & 1 \end{array}\right)$$

Let $G = \langle a_1, a_2, a_3 | [a_1, a_3] = [a_2, a_3] = 1$, $[a_1, a_2] = a_3 \rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_1, a_2, a_3) . Let $H = \langle h_1, h_2 \rangle$ with

$$h_1 = a_1^6 a_2^2 a_3, \qquad \qquad h_2 = a_1^4 a_2^2.$$

$$A = \left(\begin{array}{rrr} 6 & 2 & 1 \\ 4 & 2 & 0 \end{array}\right).$$

- Compute gcd(6, 4) = 2 = 6 4.
- Add a new row corresponding to $h_4 = h_1 h_2^{-1} = a_1^2 a_2^{-2} a_3^1$.
- Replace h_1 by $h_1' = h_1 h_4^{-3}$ and h_2 by $h_2' = h_2 h_4^{-2}$
- Exchange first and last row and eliminate unnecessary row

$$\left(\begin{array}{rrr}2&0&1\\0&2&-6\end{array}\right)$$

Let $G = \langle a_1, a_2, a_3 | [a_1, a_3] = [a_2, a_3] = 1$, $[a_1, a_2] = a_3 \rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_1, a_2, a_3) . Let $H = \langle h_1, h_2 \rangle$ with

$$h_1 = a_1^6 a_2^2 a_3, \qquad \qquad h_2 = a_1^4 a_2^2.$$

$$A = \left(\begin{array}{rrr} 6 & 2 & 1 \\ 4 & 2 & 0 \end{array}\right).$$

- Compute gcd(6, 4) = 2 = 6 4.
- Add a new row corresponding to $h_4 = h_1 h_2^{-1} = a_1^2 a_2^{-2} a_3^1$.
- Replace h_1 by $h_1' = h_1 h_4^{-3}$ and h_2 by $h_2' = h_2 h_4^{-2}$
- Exchange first and last row and eliminate unnecessary row
- Add commutators

$$\left(\begin{array}{rrr} 2 & 0 & 1 \\ 0 & 2 & -6 \\ 0 & 0 & 4 \end{array}\right)$$

Let $G = \langle a_1, a_2, a_3 | [a_1, a_3] = [a_2, a_3] = 1$, $[a_1, a_2] = a_3 \rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_1, a_2, a_3) . Let $H = \langle h_1, h_2 \rangle$ with

$$h_1 = a_1^6 a_2^2 a_3, \qquad \qquad h_2 = a_1^4 a_2^2.$$

$$A = \left(\begin{array}{rrr} 6 & 2 & 1 \\ 4 & 2 & 0 \end{array}\right).$$

- Compute gcd(6, 4) = 2 = 6 4.
- Add a new row corresponding to $h_4 = h_1 h_2^{-1} = a_1^2 a_2^{-2} a_3^1$.
- Replace h_1 by $h_1' = h_1 h_4^{-3}$ and h_2 by $h_2' = h_2 h_4^{-2}$
- Exchange first and last row and eliminate unnecessary row
- Add commutators

$$\left(\begin{array}{rrrr} 2 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 4 \end{array}\right)$$

There are only a constant number of columns \rightsquigarrow only a constant number of step and each can be done in TC⁰.

Theorem (Myasnikov, W.)

Given $h_1, \ldots, h_n \in G$ (either as unary encoded Mal'cev coordinates or as words over the generators), Matrix reduction for the subgroup $\langle h_1, \ldots, h_n \rangle$ is in TC^0 . There are only a constant number of columns \rightsquigarrow only a constant number of step and each can be done in TC⁰.

Theorem (Myasnikov, W.)

Given $h_1, \ldots, h_n \in G$ (either as unary encoded Mal'cev coordinates or as words over the generators), Matrix reduction for the subgroup $\langle h_1, \ldots, h_n \rangle$ is in TC^0 .

Corollary (Myasnikov, W.)

Let G be a nilpotent group. The (uniform) subgroup membership problem for G is in TC^0 .

Uniform algorithms/circuits for r-generated class c nilpotent groups where r and c are fixed (Macdonald, Ovchinnikov, Myasnikov, W. – work in progress).

- Conjugacy problem
- Compute kernels and images of homomorphisms
- Compute centralizers
- Compute coset intersection
- Compute torsion subgroup

Uniform algorithms/circuits for r-generated class c nilpotent groups where r and c are fixed (Macdonald, Ovchinnikov, Myasnikov, W. – work in progress).

- Conjugacy problem
- Compute kernels and images of homomorphisms
- Compute centralizers
- Compute coset intersection
- Compute torsion subgroup

Thank you!