TC ${ }^{0}$ computations and the subgroup membership problem in nilpotent groups

Armin Weiß
Stevens Institute of Technology

Manhattan Algebra Day, December 9, 2016

Outline

- Why circuit complexity for groups?
- Computing gcds
- Subgroup membership for nilpotent groups

Dehn's fundamental problems (and others)

Let G be a f.g. group, generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem: Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?
- Conjugacy problem: Given $v, w \in \Sigma^{*}$.

Question: $\exists z \in G$ such that $z v z^{-1}=w$?

- (Uniform) Subgroup membership problem: Given $v, w_{1}, \ldots, w_{n} \in \Sigma^{*}$. Question: $v \in\left\langle w_{1}, \ldots, w_{n}\right\rangle$?

Dehn's fundamental problems (and others)

Let G be a f. g. group, generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem: Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?
- Conjugacy problem: Given $v, w \in \Sigma^{*}$.

Question: $\exists z \in G$ such that $z v z^{-1}=w$?

- (Uniform) Subgroup membership problem: Given $v, w_{1}, \ldots, w_{n} \in \Sigma^{*}$. Question: $v \in\left\langle w_{1}, \ldots, w_{n}\right\rangle$?

Classification:

- Decidable vs. undecidable.

Dehn's fundamental problems (and others)

Let G be a f.g. group, generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem: Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?
- Conjugacy problem: Given $v, w \in \Sigma^{*}$.

Question: $\exists z \in G$ such that $z v z^{-1}=w$?

- (Uniform) Subgroup membership problem:

Given $v, w_{1}, \ldots, w_{n} \in \Sigma^{*}$. Question: $v \in\left\langle w_{1}, \ldots, w_{n}\right\rangle$?
Classification:

- Decidable vs. undecidable.
- Complexity: e. g. primitive recursive, NP, polynomial time

Dehn's fundamental problems (and others)

Let G be a f. g. group, generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem: Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?
- Conjugacy problem: Given $v, w \in \Sigma^{*}$.

Question: $\exists z \in G$ such that $z v z^{-1}=w$?

- (Uniform) Subgroup membership problem: Given $v, w_{1}, \ldots, w_{n} \in \Sigma^{*}$. Question: $v \in\left\langle w_{1}, \ldots, w_{n}\right\rangle$?

Classification:

- Decidable vs. undecidable.
- Complexity: e.g. primitive recursive, NP, polynomial time Inside polynomial time:
- linear time (e.g. WP/CP of hyperbolic groups)

Dehn's fundamental problems (and others)

Let G be a f.g. group, generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem: Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?
- Conjugacy problem: Given $v, w \in \Sigma^{*}$.

Question: $\exists z \in G$ such that $z v z^{-1}=w$?

- (Uniform) Subgroup membership problem: Given $v, w_{1}, \ldots, w_{n} \in \Sigma^{*}$. Question: $v \in\left\langle w_{1}, \ldots, w_{n}\right\rangle$?

Classification:

- Decidable vs. undecidable.
- Complexity: e. g. primitive recursive, NP, polynomial time Inside polynomial time:
- linear time (e.g. WP/CP of hyperbolic groups)
- LOGSPACE (e.g. WP of linear groups)

Dehn's fundamental problems (and others)

Let G be a f.g. group, generated by a finite set $\Sigma=\Sigma^{-1} \subseteq G$.

- Word problem: Given $w \in \Sigma^{*}$. Question: Is $w=1$ in G ?
- Conjugacy problem: Given $v, w \in \Sigma^{*}$.

Question: $\exists z \in G$ such that $z v z^{-1}=w$?

- (Uniform) Subgroup membership problem:

Given $v, w_{1}, \ldots, w_{n} \in \Sigma^{*}$. Question: $v \in\left\langle w_{1}, \ldots, w_{n}\right\rangle$?
Classification:

- Decidable vs. undecidable.
- Complexity: e. g. primitive recursive, NP, polynomial time Inside polynomial time:
- linear time (e.g. WP/CP of hyperbolic groups)
- LOGSPACE (e. g. WP of linear groups)
- parallel complexity

Parallel Complexity

Why parallel complexity?

- Finer classification of problems inside polynomial time.

Parallel Complexity

Why parallel complexity?

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.

Parallel Complexity

Why parallel complexity?

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.
- Parallel computing is more and more important in the "real world":
- while clock frequencies almost do not increase anymore

Stock Clock Speed

Parallel Complexity

Why parallel complexity?

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.
- Parallel computing is more and more important in the "real world":
- while clock frequencies almost do not increase anymore
- 4 cores on most desktop processors

Parallel Complexity

Why parallel complexity?

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.
- Parallel computing is more and more important in the "real world":
- while clock frequencies almost do not increase anymore
- 4 cores on most desktop processors
- > 2000 cores on high-end graphics devices

Parallel Complexity

Why parallel complexity?

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.
- Parallel computing is more and more important in the "real world":
- while clock frequencies almost do not increase anymore
- 4 cores on most desktop processors
- > 2000 cores on high-end graphics devices
- $>10^{6}$ cores on supercomputers

Parallel Complexity

Why parallel complexity?

- Finer classification of problems inside polynomial time.
- We cannot be faster than linear time on one processor, but we can on many processors.
- Parallel computing is more and more important in the "real world":
- while clock frequencies almost do not increase anymore
- 4 cores on most desktop processors
- > 2000 cores on high-end graphics devices
- $>10^{6}$ cores on supercomputers

Parallel Complexity

Machine models:

- parallel RAMs (random access machines)
- (Boolean) circuits

Parallel Complexity

Machine models:

- parallel RAMs (random access machines)
- (Boolean) circuits

Circuit $=$ directed acyclic graph where each vertex is either:

- input gates (has only outgoing edges)
- Boolean gates (and \wedge, or \vee, not \neg having incoming and outgoing edges)
- output gates (only incoming edges)

Parallel Complexity

Machine models:

- parallel RAMs (random access machines)
- (Boolean) circuits

Circuit $=$ directed acyclic graph where each vertex is either:

- input gates (has only outgoing edges)
- Boolean gates (and \wedge, or \vee, not \neg having incoming and outgoing edges)
- output gates (only incoming edges)

Parallel Complexity

Machine models:

- parallel RAMs (random access machines)
- (Boolean) circuits

Circuit $=$ directed acyclic graph where each vertex is either:

- input gates (has only outgoing edges)
- Boolean gates (and \wedge, or \vee, not \neg having incoming and outgoing edges)
- output gates (only incoming edges)
size $=$ number of gates depth $=$ longest path from input to output gate

NC = problems which can be solved by a family of circuits of polynomial size and polylogarithmic depth
$=$ problems which can be solved by a parallel RAM with a polynomial number of processors in polylogarithmic time.

Parallel Complexity

Inside NC:

- $\mathrm{NC}^{i}=$ solved by a family of circuits of depth $\mathcal{O}\left(\log ^{i} n\right)$ and polynomial size with bounded fan-in (= in-degree) \neg, \wedge, \vee gates.

Parallel Complexity

Inside NC:

- $\mathrm{NC}^{i}=$ solved by a family of circuits of depth $\mathcal{O}\left(\log ^{i} n\right)$ and polynomial size with bounded fan-in (= in-degree) \neg, \wedge, \vee gates.

Infinite hierarchy:

$$
\mathrm{NC}^{1} \subseteq \mathrm{LOGSPACE} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P}
$$

Parallel Complexity

Inside NC:

- $\mathrm{NC}^{i}=$ solved by a family of circuits of depth $\mathcal{O}\left(\log ^{i} n\right)$ and polynomial size with bounded fan-in (= in-degree) \neg, \wedge, \vee gates.

Infinite hierarchy:

$$
\mathrm{NC}^{1} \subseteq \mathrm{LOGSPACE} \subseteq \mathrm{NC}^{2} \subseteq \mathrm{NC}^{3} \subseteq \cdots \subseteq \mathrm{NC} \subseteq \mathrm{P}
$$

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)
The word problem of linear groups is in LOGSPACE.
"Proof": Given matrices A_{1}, \ldots, A_{n}, compute

$$
\prod A_{i} \bmod p
$$

for sufficiently many primes p.

Parallel Complexity

Inside NC^{1} :

- $A C^{0}=$ solved by a family of circuits of constant depth and polynomial size with unbounded fan-in \neg, \wedge, \vee gates.

Parallel Complexity

Inside NC^{1} :

- $A C^{0}=$ solved by a family of circuits of constant depth and polynomial size with unbounded fan-in \neg, \wedge, \vee gates.
- TC^{0} allows additionally majority gates:
$\operatorname{Maj}(w)=1$ iff $|w|_{1} \geq|w|_{0}$ for $w \in\{0,1\}^{*}$.

Theorem (Robinson, 1993)

The word problem of

- Baumslag-Solitar groups $\mathbf{B S}_{1, q}$ and
- nilpotent groups are uniform TC^{0}-complete.

More problems in TC^{0} :

- conjugacy problem in BS $_{1, q}$ (Diekert, Myasnikov, W., 2014)
- word problem in solvable linear groups (König, Lohrey, 2015)
- word and conjugacy problem in free solvable groups (Myasnikov, Vassileva, W., 2016)

Word problem of \mathbb{Z}

The word problem of \mathbb{Z} with generators $\{+1,-1\}$ is in TC^{0}.

Word problem of \mathbb{Z}
The word problem of \mathbb{Z} with generators $\{+1,-1\}$ is in TC^{0}.
Use 0 to encode -1 and 1 for 1 .

Word problem of \mathbb{Z}
The word problem of \mathbb{Z} with generators $\{+1,-1\}$ is in TC^{0}.
Use 0 to encode -1 and 1 for 1 . Let $w \in\{0,1\}^{*}$,

$$
\begin{aligned}
w \text { represents } 0 \text { in } \mathbb{Z} & \Longleftrightarrow|w|_{1}=|w|_{0} \\
& \Longleftrightarrow \operatorname{Maj}(w) \wedge \operatorname{Maj}(\neg w)
\end{aligned}
$$

The word problem of \mathbb{Z} with generators $\{+1,-1\}$ is in TC^{0}.
Use 0 to encode -1 and 1 for 1 . Let $w \in\{0,1\}^{*}$,

$$
\begin{aligned}
w \text { represents } 0 \text { in } \mathbb{Z} & \Longleftrightarrow|w|_{1}=|w|_{0} \\
& \Longleftrightarrow \operatorname{Maj}(w) \wedge \operatorname{Maj}(\neg w)
\end{aligned}
$$

Arithmetic problems in TC^{0}

Iterated Addition

- input: n-bit numbers r_{1}, \ldots, r_{n},
- compute $\sum_{i=1}^{n} r_{i}$.

Arithmetic problems in TC^{0}

Iterated Addition

- input: n-bit numbers r_{1}, \ldots, r_{n},
- compute $\sum_{i=1}^{n} r_{i}$.

Iterated Addition is in TC^{0}.

Arithmetic problems in TC^{0}

Iterated Addition

- input: n-bit numbers r_{1}, \ldots, r_{n},
- compute $\sum_{i=1}^{n} r_{i}$.

Iterated Addition is in TC^{0}.
Iterated Multiplication

- input: n-bit numbers r_{1}, \ldots, r_{n},
- compute $\prod_{i=1}^{n} r_{i}$.

Integer Division

- input: n-bit numbers a, b,
- compute $\left\lfloor\frac{a}{b}\right\rfloor$.

Arithmetic problems in TC^{0}

Iterated Addition

- input: n-bit numbers r_{1}, \ldots, r_{n},
- compute $\sum_{i=1}^{n} r_{i}$.

Iterated Addition is in TC^{0}.
Iterated Multiplication

- input: n-bit numbers r_{1}, \ldots, r_{n},
- compute $\prod_{i=1}^{n} r_{i}$.

Integer Division

- input: n-bit numbers a, b,
- compute $\left\lfloor\frac{a}{b}\right\rfloor$.

Theorem (Hesse, 2001)

Iterated Multiplication and Integer Division are in TC^{0}.

Reductions

- For a formal language $L \subseteq\{0,1\}^{*}, A C^{0}(L)$ allows additionally oracle gates for L.
- $L^{\prime} \in \mathrm{AC}^{0}(L)$ means L^{\prime} is AC^{0}-reducible to L.
- Every problem in TC^{0} is $A C^{0}$-reducible to Majority. \rightsquigarrow Majority is TC^{0}-complete.

Reductions

- For a formal language $L \subseteq\{0,1\}^{*}, A C^{0}(L)$ allows additionally oracle gates for L.
- $L^{\prime} \in \mathrm{AC}^{0}(L)$ means L^{\prime} is $A C^{0}$-reducible to L.
- Every problem in TC^{0} is $A C^{0}$-reducible to Majority. \rightsquigarrow Majority is TC^{0}-complete.

The word problem of \mathbb{Z} with generators $\{+1,-1\}$ is TC^{0}-complete.
Again, 1 encodes 1 and 0 encodes -1 . For $u \in\{0,1\}^{*}$:

$$
\begin{aligned}
\operatorname{Maj}(u) & \Longleftrightarrow|u|_{1} \geq|u|_{0} \\
& \Longleftrightarrow \bigvee_{0 \leq i \leq|u|}\left|u 0^{i}\right|_{1}=\left|u 0^{i}\right|_{0} \\
& \Longleftrightarrow \bigvee_{0 \leq i \leq|u|}\left(u 0^{i} \text { represents } 0 \text { in } \mathbb{Z}\right)
\end{aligned}
$$

Reductions

- For a formal language $L \subseteq\{0,1\}^{*}, A C^{0}(L)$ allows additionally oracle gates for L.
- $L^{\prime} \in A C^{0}(L)$ means L^{\prime} is $A C^{0}$-reducible to L.
- Every problem in TC^{0} is $A C^{0}$-reducible to Majority. \rightsquigarrow Majority is TC^{0}-complete.
- $\mathrm{TC}^{0}=\mathrm{AC}^{0}(\mathrm{WP}(\mathbb{Z})) \subseteq \mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$
- $\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right) \subseteq$ LOGSPACE

Overview: small circuit classes

$\mathrm{AC}^{0} \quad=\mathrm{FO}(+, *)$	$\mathbb{Z} / n \mathbb{Z}$ with one monoid generator
$\mathrm{ACC}^{0}=\mathrm{FO}(+, * ; \mathrm{Mod})$	finite solvable
$\mathrm{TC}^{0}=\mathrm{FO}(+, * ; \mathrm{Maj})$	\mathbb{Z}, linear solvable (e. g. nilpotent), free solvable
$\mathrm{NC}^{1}=\mathrm{AC}^{0}\left(\mathrm{WP}\left(A_{5}\right)\right)$	finite non-solvable, regular languages
$\mathrm{AC}^{0}\left(\mathrm{WP}\left(F_{2}\right)\right)$	virtually free, Baumslag-Solitar groups, RAAGs, free products
LOGSPACE	linear groups
NC	hyperbolic groups
P	polynomial time compressed word problem of free groups, etc.

Greatest Common Divisors

Aim: subgroup membership problem in nilpotent groups.

Greatest Common Divisors

Aim: subgroup membership problem in nilpotent groups.
Why compute greatest common divisors?

Greatest Common Divisors

Aim: subgroup membership problem in nilpotent groups.
Why compute greatest common divisors?

Subgroup membership problem of \mathbb{Z} :

Given $a, a_{1}, \ldots, a_{n} \in \mathbb{Z}$, is $a \in\left\langle a_{1}, \ldots, a_{n}\right\rangle$?
With other words are there $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ with

$$
a=x_{1} a_{1}+\cdots+x_{n} a_{n} ?
$$

Greatest Common Divisors

Aim: subgroup membership problem in nilpotent groups.
Why compute greatest common divisors?

Subgroup membership problem of \mathbb{Z} :

Given $a, a_{1}, \ldots, a_{n} \in \mathbb{Z}$, is $a \in\left\langle a_{1}, \ldots, a_{n}\right\rangle$?
With other words are there $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ with

$$
a=x_{1} a_{1}+\cdots+x_{n} a_{n} ?
$$

Clearly, $a \in\left\langle a_{1}, \ldots, a_{n}\right\rangle$ iff $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right) \mid a$.

Greatest Common Divisors

Observation

If $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ are given in unary $(a_{i}$ is represented by $\underbrace{11 \cdots 1}_{a_{i} \text { many }} 0 \cdots 0)$,
then the gcd can be computed in TC^{0}.

Greatest Common Divisors

Observation

If $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ are given in unary (a_{i} is represented by $\underbrace{11 \cdots 1}_{a_{i} \text { many }} 0 \cdots 0$),
then the gcd can be computed in TC^{0}.

Proof

Let $m=\max \left\{\left|a_{i}\right|\right\}$. For all $d \leq m$ do the following:

- check for all i whether there is some $c_{i} \leq m$ with $d c_{i}=a_{i}$ (by trying all possible values $-m \leq c_{i} \leq m$)

Greatest Common Divisors

Observation

If $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ are given in unary (a_{i} is represented by $\underbrace{11 \cdots 1}_{a_{i} \text { many }} 0 \cdots 0$),
then the gcd can be computed in TC^{0}.

Proof

Let $m=\max \left\{\left|a_{i}\right|\right\}$. For all $d \leq m$ do the following:

- check for all i whether there is some $c_{i} \leq m$ with $d c_{i}=a_{i}$ (by trying all possible values $-m \leq c_{i} \leq m$)
The largest d for which there are such c_{i} is the gcd.

Greatest Common Divisors

Observation

If $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ are given in unary (a_{i} is represented by $\underbrace{11 \cdots 1}_{a_{i} \text { many }} 0 \cdots 0$),
then the gcd can be computed in TC^{0}.

Proof

Let $m=\max \left\{\left|a_{i}\right|\right\}$. For all $d \leq m$ do the following:

- check for all i whether there is some $c_{i} \leq m$ with $d c_{i}=a_{i}$ (by trying all possible values $-m \leq c_{i} \leq m$)
The largest d for which there are such c_{i} is the gcd.
This requires $2 \mathrm{~nm}^{2}$ multiplications - all of them can be done in parallel - and one computation of the maximum.

Greatest Common Divisors

Observation

If $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ are given in unary (a_{i} is represented by $\underbrace{11 \cdots 1}_{a_{i} \text { many }} 0 \cdots 0$),
then the gcd can be computed in TC^{0}.

Proof

Let $m=\max \left\{\left|a_{i}\right|\right\}$. For all $d \leq m$ do the following:

- check for all i whether there is some $c_{i} \leq m$ with $d c_{i}=a_{i}$ (by trying all possible values $-m \leq c_{i} \leq m$)
The largest d for which there are such c_{i} is the gcd.
This requires $2 \mathrm{~nm}^{2}$ multiplications - all of them can be done in parallel - and one computation of the maximum.

Corollary

The subgroup membership problem of \mathbb{Z} (where group elements are given as words over the generators) is in TC^{0}.

Greatest Common Divisors

Subgroup membership problem of \mathbb{Z}^{2} :
Given $a, b, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{Z}$, is $(a, b) \in\left\langle\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\rangle$? With other words are there $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ with

$$
a=x_{1} a_{1}+\cdots+x_{n} a_{n} \quad \text { and } \quad b=x_{1} b_{1}+\cdots+x_{n} b_{n} ?
$$

Greatest Common Divisors

Subgroup membership problem of \mathbb{Z}^{2} :
Given $a, b, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{Z}$, is $(a, b) \in\left\langle\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\rangle$? With other words are there $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ with

$$
a=x_{1} a_{1}+\cdots+x_{n} a_{n} \quad \text { and } \quad b=x_{1} b_{1}+\cdots+x_{n} b_{n} ?
$$

(1) Compute $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ and check whether $d \nmid a$.

Greatest Common Divisors

Subgroup membership problem of \mathbb{Z}^{2} :
Given $a, b, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{Z}$, is $(a, b) \in\left\langle\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\rangle$? With other words are there $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ with

$$
a=x_{1} a_{1}+\cdots+x_{n} a_{n} \quad \text { and } \quad b=x_{1} b_{1}+\cdots+x_{n} b_{n} ?
$$

(1) Compute $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ and check whether $d \nmid a$.
(2) Compute $y_{1}, \ldots, y_{n} \in \mathbb{Z}$ with $d=y_{1} a_{1}+\cdots+y_{n} a_{n}$

Greatest Common Divisors

Subgroup membership problem of \mathbb{Z}^{2} :
Given $a, b, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{Z}$, is $(a, b) \in\left\langle\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\rangle$? With other words are there $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ with

$$
a=x_{1} a_{1}+\cdots+x_{n} a_{n} \quad \text { and } \quad b=x_{1} b_{1}+\cdots+x_{n} b_{n} ?
$$

(1) Compute $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ and check whether $d \nmid a$.
(2) Compute $y_{1}, \ldots, y_{n} \in \mathbb{Z}$ with $d=y_{1} a_{1}+\cdots+y_{n} a_{n}$
(3) Add a new pair $\left(a_{n+1}, b_{n+1}\right)$ with $a_{n+1}=d$ and $b_{n+1}=y_{1} b_{1}+\cdots+y_{n} b_{n}$.

Greatest Common Divisors

Subgroup membership problem of \mathbb{Z}^{2} :
Given $a, b, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{Z}$, is $(a, b) \in\left\langle\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\rangle$? With other words are there $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ with

$$
a=x_{1} a_{1}+\cdots+x_{n} a_{n} \quad \text { and } \quad b=x_{1} b_{1}+\cdots+x_{n} b_{n} ?
$$

(1) Compute $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ and check whether $d \nmid a$.
(2) Compute $y_{1}, \ldots, y_{n} \in \mathbb{Z}$ with $d=y_{1} a_{1}+\cdots+y_{n} a_{n}$
(3) Add a new pair $\left(a_{n+1}, b_{n+1}\right)$ with $a_{n+1}=d$ and $b_{n+1}=y_{1} b_{1}+\cdots+y_{n} b_{n}$.
(4) Subtract from all the other pairs multiples of $\left(a_{n+1}, b_{n+1}\right)$, to make the first component zero:

$$
\left(a_{i}^{\prime}, b_{i}^{\prime}\right)=\left(a_{i}, b_{i}\right)-\frac{a_{i}}{a_{n+1}}\left(a_{n+1}, b_{n+1}\right)
$$

Greatest Common Divisors

Subgroup membership problem of \mathbb{Z}^{2} :

Given $a, b, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{Z}$, is $(a, b) \in\left\langle\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\rangle$? With other words are there $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ with

$$
a=x_{1} a_{1}+\cdots+x_{n} a_{n} \quad \text { and } \quad b=x_{1} b_{1}+\cdots+x_{n} b_{n} ?
$$

(1) Compute $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ and check whether $d \nmid a$.
(2) Compute $y_{1}, \ldots, y_{n} \in \mathbb{Z}$ with $d=y_{1} a_{1}+\cdots+y_{n} a_{n}$
(3) Add a new pair $\left(a_{n+1}, b_{n+1}\right)$ with $a_{n+1}=d$ and $b_{n+1}=y_{1} b_{1}+\cdots+y_{n} b_{n}$.
(4) Subtract from all the other pairs multiples of $\left(a_{n+1}, b_{n+1}\right)$, to make the first component zero:

$$
\left(a_{i}^{\prime}, b_{i}^{\prime}\right)=\left(a_{i}, b_{i}\right)-\frac{a_{i}}{a_{n+1}}\left(a_{n+1}, b_{n+1}\right)
$$

(5) Set $b^{\prime}=b-\frac{a}{a_{n+1}} b_{n+1}$ and check whether there are $x_{1}^{\prime}, \ldots, x_{n}^{\prime} \in \mathbb{Z}$ such that $b^{\prime}=x_{1}^{\prime} b_{1}^{\prime}+\cdots+x_{n}^{\prime} b_{n}^{\prime}$

Greatest Common Divisors as linear combinations

Question

Given $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ encoded in unary. Can $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ (in unary) with $d=x_{1} a_{1}+\cdots+x_{n} a_{n}$ be computed in TC^{0} ?

Greatest Common Divisors as linear combinations

Question

Given $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ encoded in unary. Can $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ (in unary) with $d=x_{1} a_{1}+\cdots+x_{n} a_{n}$ be computed in TC^{0} ?

If $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ are encoded in binary,

- it is not known whether the gcd can be computed in NC.
- finding the smallest $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ is NP-complete (Majewski, Havas, 1994).

Greatest Common Divisors as linear combinations

Question

Given $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ encoded in unary. Can $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ (in unary) with $d=x_{1} a_{1}+\cdots+x_{n} a_{n}$ be computed in TC^{0} ?

Straightforward solution (try all possible values) does not work because there are too many:

Greatest Common Divisors as linear combinations

Question

Given $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ encoded in unary. Can $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ (in unary) with $d=x_{1} a_{1}+\cdots+x_{n} a_{n}$ be computed in TC^{0} ?

Straightforward solution (try all possible values) does not work because there are too many: Let $m=\max \left\{\left|a_{i}\right|\right\}$. There are $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ with $\left|x_{i}\right| \leq m / 2$ - this is the best known upper bound (Majewski, Havas, 1994).
$\rightsquigarrow m^{n}$ possible choices for the x_{i} to try.

Greatest Common Divisors as linear combinations

Question

Given $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ encoded in unary. Can $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ (in unary) with $d=x_{1} a_{1}+\cdots+x_{n} a_{n}$ be computed in TC^{0} ?

Straightforward solution (try all possible values) does not work because there are too many: Let $m=\max \left\{\left|a_{i}\right|\right\}$. There are $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ with $\left|x_{i}\right| \leq m / 2$ - this is the best known upper bound (Majewski, Havas, 1994).
$\rightsquigarrow m^{n}$ possible choices for the x_{i} to try.
However, if $n=2$, there are only m^{2} many values to try $\rightsquigarrow \mathrm{TC}^{0}$. We can use this idea to compute x_{1}, \ldots, x_{n} in TC^{0} :

Greatest Common Divisors as linear combinations

First, set $d_{0}=0$ compute

$$
\begin{aligned}
d_{i}= & \operatorname{gcd}\left(a_{1}, \ldots, a_{i}\right) \quad \text { for } i=1, \ldots, n \\
& \rightsquigarrow \quad d_{i}=\operatorname{gcd}\left(d_{i-1}, a_{i}\right) .
\end{aligned}
$$

For each i, compute integers y_{i} and z_{i} such that $d_{i}=y_{i} d_{i-1}+z_{i} a_{i}$. Next compute

$$
x_{i}=z_{i} \cdot \prod_{j=i+1}^{n} y_{j}
$$

in TC^{0} using iterated multiplication. Now, we have

$$
x_{1} a_{1}+\cdots+x_{n} a_{n}=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)
$$

Greatest Common Divisors as linear combinations

First, set $d_{0}=0$ compute

$$
\begin{aligned}
d_{i}= & \operatorname{gcd}\left(a_{1}, \ldots, a_{i}\right) \quad \text { for } i=1, \ldots, n \\
& \rightsquigarrow \quad d_{i}=\operatorname{gcd}\left(d_{i-1}, a_{i}\right) .
\end{aligned}
$$

For each i, compute integers y_{i} and z_{i} such that $d_{i}=y_{i} d_{i-1}+z_{i} a_{i}$. Next compute

$$
x_{i}=z_{i} \cdot \prod_{j=i+1}^{n} y_{j}
$$

in TC^{0} using iterated multiplication. Now, we have

$$
x_{1} a_{1}+\cdots+x_{n} a_{n}=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)
$$

Problem: can compute the x_{i} only in binary in TC^{0}.

Greatest Common Divisors as linear combinations

First, set $d_{0}=0$ compute

$$
\begin{aligned}
d_{i}= & \operatorname{gcd}\left(a_{1}, \ldots, a_{i}\right) \quad \text { for } i=1, \ldots, n \\
& \rightsquigarrow \quad d_{i}=\operatorname{gcd}\left(d_{i-1}, a_{i}\right) .
\end{aligned}
$$

For each i, compute integers y_{i} and z_{i} such that $d_{i}=y_{i} d_{i-1}+z_{i} a_{i}$. Next compute

$$
x_{i}=z_{i} \cdot \prod_{j=i+1}^{n} y_{j}
$$

in TC^{0} using iterated multiplication. Now, we have

$$
x_{1} a_{1}+\cdots+x_{n} a_{n}=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)
$$

Problem: can compute the x_{i} only in binary in TC^{0}.
\rightsquigarrow we have to make them smaller.

Greatest Common Divisors as linear combinations

How to make them small?

Greatest Common Divisors as linear combinations

How to make them small?

If $n=2$, this is easy:
Assume $a, b>0$ and $a x+b y=\operatorname{gcd}(a, b)$ with $x \geq b$. Set $p=\left\lfloor\frac{x}{b}\right\rfloor$ and replace

- x by $x-b p$ and
- y by $y+a p$.

Greatest Common Divisors as linear combinations

How to make them small?
If $n=2$, this is easy:
Assume $a, b>0$ and $a x+b y=\operatorname{gcd}(a, b)$ with $x \geq b$. Set $p=\left\lfloor\frac{x}{b}\right\rfloor$ and replace

- x by $x-b p$ and
- y by $y+a p$.

If $n>2$, we can apply this method for selected pairs in parallel.

Greatest Common Divisors as linear combinations

How to make them small?

If $n=2$, this is easy:
Assume $a, b>0$ and $a x+b y=\operatorname{gcd}(a, b)$ with $x \geq b$. Set $p=\left\lfloor\frac{x}{b}\right\rfloor$ and replace

- x by $x-b p$ and
- y by $y+a p$.

If $n>2$, we can apply this method for selected pairs in parallel.
For which pairs?

Greatest Common Divisors as linear combinations

$x_{1} a_{1} \quad x_{2} a_{2} \quad x_{3} a_{3} \quad \cdots \quad x_{1} a_{1}$

Greatest Common Divisors as linear combinations

Greatest Common Divisors as linear combinations

$x_{1} a_{1} \quad x_{2} a_{2} \quad x_{3} a_{3} \quad \cdots \quad x_{1} a_{1}$

- Blocks of size $\max \left\{a_{i}^{2}\right\}$

Greatest Common Divisors as linear combinations

$$
x_{1} a_{1} \quad x_{2} a_{2} \quad x_{3} a_{3} \quad \cdots \quad x_{1} a_{1}
$$

- Blocks of size $\max \left\{a_{i}^{2}\right\}$
- Using iterated addition, we can compute how many blocks from column i should go to column j in TC^{0}.

Greatest Common Divisors as linear combinations

$x_{1} a_{1} \quad x_{2} a_{2} \quad x_{3} a_{3} \quad \cdots \quad x_{1} a_{1}$

- Blocks of size $\max \left\{a_{i}^{2}\right\}$
- Using iterated addition, we can compute how many blocks from column i should go to column j in TC^{0}.
- Use idea for $n=2$ to approximate blocks moved from column i to column j.

Greatest common divisors in TC^{0}

Theorem (Myasnikov, W., 2016)

There is a family of TC^{0} circuits for the following problem: given $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ encoded in unary, compute $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ in unary with $d=x_{1} a_{1}+\cdots+x_{n} a_{n}$.

Greatest common divisors in TC^{0}

Theorem (Myasnikov, W., 2016)

There is a family of TC^{0} circuits for the following problem: given $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ encoded in unary, compute $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ in unary with $d=x_{1} a_{1}+\cdots+x_{n} a_{n}$.

Corollary

Let G be a free abelian group. Then the subgroup membership problem for G is in TC^{0}.

Nilpotent groups

Definition

A group G is nilpotent of class c if

$$
G=\Gamma_{1}(G) \geq \Gamma_{2}(G) \geq \cdots \Gamma_{c}(G)>\Gamma_{c+1}(G)=\{1\}
$$

where $\Gamma_{i+1}=\left[\Gamma_{i}, G\right]=\left\langle x^{-1} g^{-1} x g\right.$ for $\left.x \in \Gamma_{i}, g \in G\right\rangle$.

Nilpotent groups

Definition

A group G is nilpotent of class c if

$$
G=\Gamma_{1}(G) \geq \Gamma_{2}(G) \geq \cdots \Gamma_{c}(G)>\Gamma_{c+1}(G)=\{1\}
$$

where $\Gamma_{i+1}=\left[\Gamma_{i}, G\right]=\left\langle x^{-1} g^{-1} x g\right.$ for $\left.x \in \Gamma_{i}, g \in G\right\rangle$.

Nilpotent groups

Definition

A group G is nilpotent of class c if

$$
G=\Gamma_{1}(G) \geq \Gamma_{2}(G) \geq \cdots \Gamma_{c}(G)>\Gamma_{c+1}(G)=\{1\}
$$

where $\Gamma_{i+1}=\left[\Gamma_{i}, G\right]=\left\langle x^{-1} g^{-1} x g\right.$ for $\left.x \in \Gamma_{i}, g \in G\right\rangle$.

Theorem (Macdonald, Myasnikov, Nikolaev, Vassileva, 2015)

Let G be a nilpotent group. The (uniform) subgroup membership problem for G is in LOGSPACE.

The proof is based on so-called matrix reduction (Sims, 1994).

Mal'cev coordinates

Let G be a nilpotent group with Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)=\vec{a}$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}=: \overrightarrow{a^{\times}}
$$

with $\vec{x}=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{n}$ (if there is torsion some of them are restricted $0 \leq x_{i}<e_{i}$) and such that

$$
\left[a_{i}, a_{j}\right] \in\left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle .
$$

Mal'cev coordinates

Let G be a nilpotent group with Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)=\vec{a}$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}=: \vec{a}^{-x}
$$

with $\vec{x}=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{n}$ (if there is torsion some of them are restricted $0 \leq x_{i}<e_{i}$) and such that

$$
\left[a_{i}, a_{j}\right] \in\left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle
$$

- The product of two elements can be written in the same fashion

$$
a_{1}^{x_{1}} \cdots a_{m}^{x_{m}} \cdot a_{1}^{y_{1}} \cdots a_{m}^{y_{m}}=a_{1}^{q_{1}} \cdots a_{m}^{q_{m}} .
$$

The exponents q_{1}, \ldots, q_{m} are functions of x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{m} - if G is torsion-free they are polynomials.

Mal'cev coordinates

Let G be a nilpotent group with Mal'cev basis $\left(a_{1}, \ldots, a_{m}\right)=\vec{a}$.

- Each $g \in G$ has a unique normal form

$$
g=a_{1}^{x_{1}} \cdots a_{m}^{x_{m}}=: \vec{a}^{\vec{x}}
$$

with $\vec{x}=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Z}^{n}$ (if there is torsion some of them are restricted $\left.0 \leq x_{i}<e_{i}\right)$ and such that

$$
\left[a_{i}, a_{j}\right] \in\left\langle a_{\max \{i, j\}+1}, \ldots, a_{m}\right\rangle .
$$

- The product of two elements can be written in the same fashion

$$
a_{1}^{x_{1}} \cdots a_{m}^{x_{m}} \cdot a_{1}^{y_{1}} \cdots a_{m}^{y_{m}}=a_{1}^{q_{1}} \cdots a_{m}^{q_{m}} .
$$

The exponents q_{1}, \ldots, q_{m} are functions of x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{m} - if G is torsion-free they are polynomials.

Fact

$$
q_{i}\left(0, \ldots, 0, x_{i}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right)=x_{i}+y_{i} \quad\left(\bmod e_{i}\right)
$$

Matrix reduction

Let $\left(h_{1}, \ldots, h_{n}\right)$ be generators of a subgroup H. We associate a matrix of coordinates

$$
A=\left(\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 m} \\
\vdots & \ddots & \vdots \\
\alpha_{n 1} & \cdots & \alpha_{n m}
\end{array}\right)
$$

where $\left(\alpha_{i 1}, \ldots \alpha_{i m}\right)$ are the Mal'cev coordinate of h_{i}.

Let $\left(h_{1}, \ldots, h_{n}\right)$ be generators of a subgroup H. We associate a matrix of coordinates

$$
A=\left(\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 m} \\
\vdots & \ddots & \vdots \\
\alpha_{n 1} & \cdots & \alpha_{n m}
\end{array}\right)
$$

where $\left(\alpha_{i 1}, \ldots \alpha_{i m}\right)$ are the Mal'cev coordinate of h_{i}.
We do "Gaussian elimination" until we reach a matrix satisfying (here, π_{i} is the position of the i-th pivot $=$ first non-zero entry in row i):
(i) $\pi_{1}<\pi_{2}<\ldots<\pi_{s}$ (where s is the number of pivots),
(ii) $\alpha_{i \pi_{i}}>0$, for all $i=1, \ldots, n$,
(iii) $0 \leq \alpha_{k \pi_{i}}<\alpha_{i \pi_{i}}$, for all $1 \leq k<i \leq s$
(iv) if $e_{\pi_{i}}<\infty$, then $\alpha_{i \pi_{i}}$ divides $e_{\pi_{i}}$, for $i=1, \ldots, s$.
(v) $H \cap\left\langle a_{i}, a_{i+1}, \ldots, a_{m}\right\rangle$ is generated by $\left\{h_{j} \mid \pi_{j} \geq i\right\}$, for all $1 \leq i \leq m$.

Let $\left(h_{1}, \ldots, h_{n}\right)$ be generators of a subgroup H. We associate a matrix of coordinates

$$
A=\left(\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 m} \\
\vdots & \ddots & \vdots \\
\alpha_{n 1} & \cdots & \alpha_{n m}
\end{array}\right)
$$

where $\left(\alpha_{i 1}, \ldots \alpha_{i m}\right)$ are the Mal'cev coordinate of h_{i}.
We do "Gaussian elimination" until we reach a matrix satisfying (here, π_{i} is the position of the i-th pivot $=$ first non-zero entry in row i):
(i) $\pi_{1}<\pi_{2}<\ldots<\pi_{s}$ (where s is the number of pivots),
(ii) $\alpha_{i \pi_{i}}>0$, for all $i=1, \ldots, n$,
(iii) $0 \leq \alpha_{k \pi_{i}}<\alpha_{i \pi_{i}}$, for all $1 \leq k<i \leq s$
(iv) if $e_{\pi_{i}}<\infty$, then $\alpha_{i \pi_{i}}$ divides $e_{\pi_{i}}$, for $i=1, \ldots, s$.
(v) $H \cap\left\langle a_{i}, a_{i+1}, \ldots, a_{m}\right\rangle$ is generated by $\left\{h_{j} \mid \pi_{j} \geq i\right\}$, for all $1 \leq i \leq m$.

Example: Matrix reduction

Let $G=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_{1}, a_{2}, a_{3}).
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with

$$
h_{1}=a_{1}^{6} a_{2}^{2} a_{3},
$$

$$
h_{2}=a_{1}^{4} a_{2}^{2}
$$

Example: Matrix reduction

Let $G=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_{1}, a_{2}, a_{3}).
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with

$$
h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}
$$

The associated matrix is

$$
A=\left(\begin{array}{lll}
6 & 2 & 1 \\
4 & 2 & 0
\end{array}\right)
$$

Example: Matrix reduction

Let $G=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_{1}, a_{2}, a_{3}).
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with

$$
h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}
$$

The associated matrix is

$$
A=\left(\begin{array}{lll}
6 & 2 & 1 \\
4 & 2 & 0
\end{array}\right)
$$

- Compute $\operatorname{gcd}(6,4)=2=6-4$.

Example: Matrix reduction

Let $G=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_{1}, a_{2}, a_{3}).
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with

$$
h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}
$$

The associated matrix is

$$
A=\left(\begin{array}{lll}
6 & 2 & 1 \\
4 & 2 & 0
\end{array}\right)
$$

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{4}=h_{1} h_{2}^{-1}$.

Example: Matrix reduction

Let $G=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_{1}, a_{2}, a_{3}).
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with

$$
h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}
$$

The associated matrix is

$$
A=\left(\begin{array}{lll}
6 & 2 & 1 \\
4 & 2 & 0
\end{array}\right)
$$

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{4}=h_{1} h_{2}^{-1}=a_{1}^{6} a_{2}^{2} a_{3}\left(a_{1}^{4} a_{2}^{2}\right)^{-1}$.

Example: Matrix reduction

Let $G=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_{1}, a_{2}, a_{3}).
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with

$$
h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}
$$

The associated matrix is

$$
A=\left(\begin{array}{lll}
6 & 2 & 1 \\
4 & 2 & 0
\end{array}\right)
$$

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{4}=h_{1} h_{2}^{-1}=a_{1}^{6} a_{2}^{2} a_{3} a_{1}^{-4} a_{2}^{-2} a_{3}^{-8}$.

Example: Matrix reduction

Let $G=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_{1}, a_{2}, a_{3}).
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with

$$
h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}
$$

The associated matrix is

$$
A=\left(\begin{array}{lll}
6 & 2 & 1 \\
4 & 2 & 0
\end{array}\right)
$$

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{4}=h_{1} h_{2}^{-1}=a_{1}^{2} a_{2}^{-2} a_{3}^{1}$.

$$
\left(\begin{array}{lll}
6 & 2 & 1 \\
4 & 2 & 0 \\
2 & 0 & 1
\end{array}\right)
$$

Example: Matrix reduction

Let $G=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_{1}, a_{2}, a_{3}).
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with

$$
h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}
$$

The associated matrix is

$$
A=\left(\begin{array}{lll}
6 & 2 & 1 \\
4 & 2 & 0
\end{array}\right)
$$

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{4}=h_{1} h_{2}^{-1}=a_{1}^{2} a_{2}^{-2} a_{3}^{1}$.
- Replace h_{1} by $h_{1}^{\prime}=h_{1} h_{4}^{-3}$ and h_{2} by $h_{2}^{\prime}=h_{2} h_{4}^{-2}$

$$
\left(\begin{array}{lll}
6 & 2 & 1 \\
4 & 2 & 0 \\
2 & 0 & 1
\end{array}\right)
$$

Example: Matrix reduction

Let $G=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_{1}, a_{2}, a_{3}).
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with

$$
h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}
$$

The associated matrix is

$$
A=\left(\begin{array}{lll}
6 & 2 & 1 \\
4 & 2 & 0
\end{array}\right)
$$

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{4}=h_{1} h_{2}^{-1}=a_{1}^{2} a_{2}^{-2} a_{3}^{1}$.
- Replace h_{1} by $h_{1}^{\prime}=h_{1} h_{4}^{-3}$ and h_{2} by $h_{2}^{\prime}=h_{2} h_{4}^{-2}$

$$
\left(\begin{array}{ccc}
0 & 2 & -6 \\
0 & 2 & -6 \\
2 & 0 & 1
\end{array}\right)
$$

Example: Matrix reduction

Let $G=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_{1}, a_{2}, a_{3}).
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with

$$
h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}
$$

The associated matrix is

$$
A=\left(\begin{array}{lll}
6 & 2 & 1 \\
4 & 2 & 0
\end{array}\right)
$$

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{4}=h_{1} h_{2}^{-1}=a_{1}^{2} a_{2}^{-2} a_{3}^{1}$.
- Replace h_{1} by $h_{1}^{\prime}=h_{1} h_{4}^{-3}$ and h_{2} by $h_{2}^{\prime}=h_{2} h_{4}^{-2}$
- Exchange first and last row and eliminate unnecessary row

$$
\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 2 & -6
\end{array}\right)
$$

Example: Matrix reduction

Let $G=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_{1}, a_{2}, a_{3}).
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with

$$
h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}
$$

The associated matrix is

$$
A=\left(\begin{array}{lll}
6 & 2 & 1 \\
4 & 2 & 0
\end{array}\right)
$$

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{4}=h_{1} h_{2}^{-1}=a_{1}^{2} a_{2}^{-2} a_{3}^{1}$.
- Replace h_{1} by $h_{1}^{\prime}=h_{1} h_{4}^{-3}$ and h_{2} by $h_{2}^{\prime}=h_{2} h_{4}^{-2}$
- Exchange first and last row and eliminate unnecessary row
- Add commutators

$$
\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 2 & -6 \\
0 & 0 & 4
\end{array}\right)
$$

Example: Matrix reduction

Let $G=\left\langle a_{1}, a_{2}, a_{3} \mid\left[a_{1}, a_{3}\right]=\left[a_{2}, a_{3}\right]=1,\left[a_{1}, a_{2}\right]=a_{3}\right\rangle$ be the 3-dimensional Heisenberg group with Mal'cev basis (a_{1}, a_{2}, a_{3}).
Let $H=\left\langle h_{1}, h_{2}\right\rangle$ with

$$
h_{1}=a_{1}^{6} a_{2}^{2} a_{3}, \quad h_{2}=a_{1}^{4} a_{2}^{2}
$$

The associated matrix is

$$
A=\left(\begin{array}{lll}
6 & 2 & 1 \\
4 & 2 & 0
\end{array}\right)
$$

- Compute $\operatorname{gcd}(6,4)=2=6-4$.
- Add a new row corresponding to $h_{4}=h_{1} h_{2}^{-1}=a_{1}^{2} a_{2}^{-2} a_{3}^{1}$.
- Replace h_{1} by $h_{1}^{\prime}=h_{1} h_{4}^{-3}$ and h_{2} by $h_{2}^{\prime}=h_{2} h_{4}^{-2}$
- Exchange first and last row and eliminate unnecessary row
- Add commutators

$$
\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 2 \\
0 & 0 & 4
\end{array}\right)
$$

There are only a constant number of columns \rightsquigarrow only a constant number of step and each can be done in TC^{0}.

Theorem (Myasnikov, W.)

Given $h_{1}, \ldots, h_{n} \in G$ (either as unary encoded Mal'cev coordinates or as words over the generators), Matrix reduction for the subgroup $\left\langle h_{1}, \ldots, h_{n}\right\rangle$ is in TC^{0}.

There are only a constant number of columns \rightsquigarrow only a constant number of step and each can be done in TC ${ }^{0}$.

Theorem (Myasnikov, W.)

Given $h_{1}, \ldots, h_{n} \in G$ (either as unary encoded Mal'cev coordinates or as words over the generators), Matrix reduction for the subgroup $\left\langle h_{1}, \ldots, h_{n}\right\rangle$ is in TC^{0}.

Corollary (Myasnikov, W.)

Let G be a nilpotent group. The (uniform) subgroup membership problem for G is in TC^{0}.

Uniform algorithms/circuits for r-generated class c nilpotent groups where r and c are fixed (Macdonald, Ovchinnikov, Myasnikov, W. work in progress).

- Conjugacy problem
- Compute kernels and images of homomorphisms
- Compute centralizers
- Compute coset intersection
- Compute torsion subgroup

Uniform algorithms/circuits for r-generated class c nilpotent groups where r and c are fixed (Macdonald, Ovchinnikov, Myasnikov, W. work in progress).

- Conjugacy problem
- Compute kernels and images of homomorphisms
- Compute centralizers
- Compute coset intersection
- Compute torsion subgroup

Thank you!

