Armin Weiß¹

Universität Stuttgart, Germany

Online, May 2020

¹Based on joint work with Géraud Sénizergues and Volker Diekert

Armin Weiß

On the isomorphism problem for virtually free groups

- Introduction
- Main result: complexity of the isomorphism problem for virtually free groups

- Introduction
- Main result: complexity of the isomorphism problem for virtually free groups
- Proof part 1: Graphs of groups and formal languages

- Introduction
- Main result: complexity of the isomorphism problem for virtually free groups
- Proof part 1: Graphs of groups and formal languages
- Cuts and structure trees

Isomorphism problem: Given finite presentations $\langle \Sigma | R \rangle$ and $\langle \Sigma' | R' \rangle$, are the groups isomorphic?

Isomorphism problem: Given finite presentations $\langle \Sigma | R \rangle$ and $\langle \Sigma' | R' \rangle$, are the groups isomorphic?

Special cases:

- virtually free presentation.
- context-free grammar for the word problem.

Isomorphism problem: Given finite presentations $\langle \Sigma | R \rangle$ and $\langle \Sigma' | R' \rangle$, are the groups isomorphic?

Special cases:

- virtually free presentation.
- context-free grammar for the word problem.

Word problem for a group $G = \langle \Sigma | R \rangle$: Given a word $w \in \Sigma^*$, is $w =_G 1$?

$$WP(G) = \{ w \in \Sigma^* \mid w =_G 1 \}$$

- Input: Finite presentations $\langle \Sigma | R \rangle$ and $\langle \Sigma' | R' \rangle$.
- **Promise**: $\langle \Sigma \mid R \rangle$ and $\langle \Sigma' \mid R' \rangle$ are free groups.
- Question: Is $\langle \Sigma | R \rangle \cong \langle \Sigma' | R' \rangle$?

- Input: Finite presentations $\langle \Sigma | R \rangle$ and $\langle \Sigma' | R' \rangle$.
- Promise: $\langle \Sigma | R \rangle$ and $\langle \Sigma' | R' \rangle$ are free groups.

```
Question: Is \langle \Sigma \mid R \rangle \cong \langle \Sigma' \mid R' \rangle?
```

This is decidable:

Input: Finite presentations $\langle \Sigma | R \rangle$ and $\langle \Sigma' | R' \rangle$. Promise: $\langle \Sigma | R \rangle$ and $\langle \Sigma' | R' \rangle$ are free groups.

```
Question: Is \langle \Sigma | R \rangle \cong \langle \Sigma' | R' \rangle?
```

This is decidable:

• Add relations ab = ba for $a, b \in \Sigma$ and $a^2 = 1$ for $a \in \Sigma$.

Input: Finite presentations $\langle \Sigma | R \rangle$ and $\langle \Sigma' | R' \rangle$. Promise: $\langle \Sigma | R \rangle$ and $\langle \Sigma' | R' \rangle$ are free groups.

```
Question: Is \langle \Sigma | R \rangle \cong \langle \Sigma' | R' \rangle?
```

This is decidable:

- Add relations ab = ba for $a, b \in \Sigma$ and $a^2 = 1$ for $a \in \Sigma$.
- Same for $\langle \Sigma' \mid R' \rangle$.

- Input: Finite presentations $\langle \Sigma | R \rangle$ and $\langle \Sigma' | R' \rangle$.
- Promise: $\langle \Sigma | R \rangle$ and $\langle \Sigma' | R' \rangle$ are free groups.

```
Question: Is \langle \Sigma | R \rangle \cong \langle \Sigma' | R' \rangle?
```

This is decidable:

- Add relations ab = ba for $a, b \in \Sigma$ and $a^2 = 1$ for $a \in \Sigma$.
- Same for $\langle \Sigma' \mid R' \rangle$.
- Use linear algebra to check isomorphism of \mathbb{F}_2 vector spaces.

A context-free grammar is a tuple (V, Σ, P, S) with $P \subseteq V \times (V \cup \Sigma)^*$: Start with S and rewrite A to α if $A \rightarrow \alpha \in P$.

A context-free grammar is a tuple (V, Σ, P, S) with $P \subseteq V \times (V \cup \Sigma)^*$: Start with S and rewrite A to α if $A \rightarrow \alpha \in P$.

- Introduced by Noam Chomsky (1950s) to describe natural language
- heavily studied in theoretical computer science
- application in programming languages/compilers etc.

A context-free grammar is a tuple (V, Σ, P, S) with $P \subseteq V \times (V \cup \Sigma)^*$: Start with S and rewrite A to α if $A \rightarrow \alpha \in P$.

- Introduced by Noam Chomsky (1950s) to describe natural language
- heavily studied in theoretical computer science
- application in programming languages/compilers etc.

 $\Sigma = \{ \coloneqq, ;, \text{if, then, else, endif, while, do, endwhile, (,), +, *, =, \neg, \land \}, \\ V = \{A, B, C, X\},\$

 $C \rightarrow X := A \mid C; C \mid \text{if } B \text{ then } C \text{ else } C \text{ endif } \mid \text{while } B \text{ do } C \text{ endwhile}$ $A \rightarrow X \mid (A + A) \mid (A * A)$ $B \rightarrow A = A \mid \neg B \mid B \land B$

A context-free grammar is a tuple (V, Σ, P, S) with $P \subseteq V \times (V \cup \Sigma)^*$: Start with S and rewrite A to α if $A \rightarrow \alpha \in P$.

A group G is context-free iff WP(G) is context-free

A context-free grammar is a tuple (V, Σ, P, S) with $P \subseteq V \times (V \cup \Sigma)^*$: Start with S and rewrite A to α if $A \rightarrow \alpha \in P$.

A group G is context-free iff WP(G) is context-free

Example

Free groups are context-free:

$$S \rightarrow aS\overline{a}S \mid \overline{a}SaS \mid bS\overline{b}S \mid \overline{b}SbS \mid 1$$

A context-free grammar is a tuple (V, Σ, P, S) with $P \subseteq V \times (V \cup \Sigma)^*$: Start with S and rewrite A to α if $A \rightarrow \alpha \in P$.

A group G is context-free iff WP(G) is context-free

Example

Free groups are context-free:

$$S \rightarrow aS\overline{a}S \mid \overline{a}SaS \mid bS\overline{b}S \mid \overline{b}SbS \mid 1$$

Fact

If K is context-free and L is regular, then $K \cap L$ is context-free.

A context-free grammar is a tuple (V, Σ, P, S) with $P \subseteq V \times (V \cup \Sigma)^*$: Start with S and rewrite A to α if $A \rightarrow \alpha \in P$.

A group G is context-free iff WP(G) is context-free

Example

Free groups are context-free:

$$S
ightarrow aS\overline{a}S \mid \overline{a}SaS \mid bS\overline{b}S \mid \overline{b}SbS \mid 1$$

Fact

If K is context-free and L is regular, then $K \cap L$ is context-free.

Example

 $K = WP(F_2)$ L = freely reduced words

$$\rightsquigarrow {\sf K} \cap {\sf L} = \set{1} \text{ is context-free}$$

Armin Weiß

Virtually free = free subgroup of finite index

Virtually free = free subgroup of finite index

Theorem (Muller, Schupp, 1983)

A group is finitely generated virtually free iff it is context-free.

Virtually free = free subgroup of finite index

Theorem (Muller, Schupp, 1983)

A group is finitely generated virtually free iff it is context-free.

 $1 \rightarrow F \rightarrow G \rightarrow Q \rightarrow 1$ with F free, Q finite

Virtually free = free subgroup of finite index

Theorem (Muller, Schupp, 1983)

A group is finitely generated virtually free iff it is context-free.

 $1 \rightarrow F \rightarrow G \rightarrow Q \rightarrow 1$ with F free, Q finite

Virtually free presentation:

- basis X of F,
- a system of representatives $R \subseteq G$ of $F \setminus G$
- multiplication rules: for $q \in R$, $a \in R \cup X$ there are $f \in F$, $r \in R$ with

qa = fr.

Virtually free = free subgroup of finite index

Theorem (Muller, Schupp, 1983)

A group is finitely generated virtually free iff it is context-free.

 $1 \rightarrow F \rightarrow G \rightarrow Q \rightarrow 1$ with F free, Q finite

Virtually free presentation:

- basis X of F,
- a system of representatives $R \subseteq G$ of $F \setminus G$
- multiplication rules: for $q \in R$, $a \in R \cup X$ there are $f \in F$, $r \in R$ with

$$qa = fr$$
.

Example		
Let	$F = \mathbb{Z} = \langle x \rangle, \qquad Q = \mathbb{Z}/2\mathbb{Z}, \qquad R = \{1, a\}$	
with rules	$ax = xa, \qquad aa = 1.$	
Annaia Mail		6/22

 G_1

$$F_1 = \mathbb{Z} = \langle x \rangle, \qquad Q_1 = \mathbb{Z}/2\mathbb{Z}, \qquad R_1 = \{1, a\}$$

with rules

$$ax = xa$$
, $aa = 1$.

 G_1

$$F_1 = \mathbb{Z} = \langle x \rangle, \qquad Q_1 = \mathbb{Z}/2\mathbb{Z}, \qquad R_1 = \{1, a\}$$

with rules

$$ax = xa, \qquad aa = 1$$

 G_2

$$F_2 = \mathbb{Z} = \langle y \rangle, \qquad Q_2 = \mathbb{Z}/2\mathbb{Z}, \qquad R_2 = \{1, b\}$$

with rules $by = yb, \qquad bb = y,$

 G_1

$$F_1 = \mathbb{Z} = \langle x \rangle, \qquad Q_1 = \mathbb{Z}/2\mathbb{Z}, \qquad R_1 = \{1, a\}$$

with rules

$$ax = xa, \qquad aa = 1$$

 G_2

$$F_2 = \mathbb{Z} = \langle y \rangle, \qquad Q_2 = \mathbb{Z}/2\mathbb{Z}, \qquad R_2 = \{1, b\}$$

with rules

by = yb, bb = y,

 G_3

$$F_3 = \mathbb{Z} = \langle z \rangle$$
, $Q_3 = \mathbb{Z}/2\mathbb{Z}$, $R_3 = \{1, c\}$
with rules $cz = zc$, $cc = zz$.

 G_1

$$F_1 = \mathbb{Z} = \langle x \rangle, \qquad Q_1 = \mathbb{Z}/2\mathbb{Z}, \qquad R_1 = \{1, a\}$$

with rules

$$ax = xa, \qquad aa = 1$$

 G_2

$$F_2 = \mathbb{Z} = \langle y \rangle, \qquad Q_2 = \mathbb{Z}/2\mathbb{Z}, \qquad R_2 = \{1, b\}$$

with rules

 $by = yb, \qquad bb = y,$

G3

$$F_3 = \mathbb{Z} = \langle z \rangle, \qquad Q_3 = \mathbb{Z}/2\mathbb{Z}, \qquad R_3 = \{ 1, c \}$$

with rules

 $cz = zc, \qquad cc = zz.$

Then $G_1 \cong G_3 \cong \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (via $z \mapsto x, c \mapsto ax$) and $G_2 \cong \mathbb{Z}$.

Theorem (Krstić, 1989)

The isomorphism problem for virtually free groups is decidable (input: arbitrary presentations with the promise to be virtually free).

Theorem (Krstić, 1989)

The isomorphism problem for virtually free groups is decidable (input: arbitrary presentations with the promise to be virtually free).

Theorem (Sénizergues, 1993)

The isomorphism problem with virtually free presentations as input is primitive recursive.

Theorem (Krstić, 1989)

The isomorphism problem for virtually free groups is decidable (input: arbitrary presentations with the promise to be virtually free).

Theorem (Sénizergues, 1993)

The isomorphism problem with virtually free presentations as input is primitive recursive.

Theorem (Sénizergues, 1996)

The isomorphism problem with context-free grammars as input is primitive recursive.

Theorem (Krstić, 1989)

The isomorphism problem for virtually free groups is decidable (input: arbitrary presentations with the promise to be virtually free).

Theorem (Sénizergues, 1993)

The isomorphism problem with virtually free presentations as input is primitive recursive.

Theorem (Sénizergues, 1996)

The isomorphism problem with context-free grammars as input is primitive recursive.

Theorem (Sénizergues, W. 2018)

The isomorphism problem

- with virtually free presentations as input is in PSPACE,
- with context-free grammasr as input it is in $SPACE(2^{2^{\mathcal{O}(n)}})$.

Armin Weiß

A graph of groups \mathcal{G} is a connected graph Y = (V(Y), E(Y)) and

- for each vertex $P \in V(Y)$, a vertex group G_P ,
- ② for each edge y ∈ E(Y), an edge group $G_y ≤ G_{s(y)}$.
- **3** for each $y \in E(Y)$, an isomorphism $f_y : G_y \to G_{\overline{y}}$ with $f_y \circ f_{\overline{y}} = \text{Id.}$

A graph of groups \mathcal{G} is a connected graph Y = (V(Y), E(Y)) and

- for each vertex $P \in V(Y)$, a vertex group G_P ,
- 2 for each edge $y \in E(Y)$, an edge group $G_y \leq G_{s(y)}$.
- **3** for each $y \in E(Y)$, an isomorphism $f_y : G_y \to G_{\overline{y}}$ with $f_y \circ f_{\overline{y}} = \text{Id.}$

Definition (Fundamental group)

The fundamental group $\pi_1(\mathcal{G}, \mathcal{T})$ of a graph of groups \mathcal{G} over Y is the fundamental group of Y + elements of the respective vertex groups.

A graph of groups \mathcal{G} is a connected graph Y = (V(Y), E(Y)) and

- for each vertex $P \in V(Y)$, a vertex group G_P ,
- ② for each edge $y \in E(Y)$, an edge group $G_y ≤ G_{s(y)}$.
- **3** for each $y \in E(Y)$, an isomorphism $f_y : G_y \to G_{\overline{y}}$ with $f_y \circ f_{\overline{y}} = \text{Id.}$

Definition (Fundamental group)

The fundamental group $\pi_1(\mathcal{G}, \mathcal{T})$ of a graph of groups \mathcal{G} over Y is the fundamental group of Y + elements of the respective vertex groups.

Let $T \subseteq E(Y)$ be a spanning tree of Y

 $\pi_1(\mathcal{G},T)=F(E(Y))$

modulo defining relations

 $\{x = 1 \qquad | x \in T$

A graph of groups \mathcal{G} is a connected graph Y = (V(Y), E(Y)) and

- for each vertex $P \in V(Y)$, a vertex group G_P ,
- ② for each edge $y \in E(Y)$, an edge group $G_y ≤ G_{s(y)}$.
- **3** for each $y \in E(Y)$, an isomorphism $f_y : G_y \to G_{\overline{y}}$ with $f_y \circ f_{\overline{y}} = \text{Id.}$

Definition (Fundamental group)

The fundamental group $\pi_1(\mathcal{G}, T)$ of a graph of groups \mathcal{G} over Y is the fundamental group of Y + elements of the respective vertex groups.

Let $T \subseteq E(Y)$ be a spanning tree of Y

$$\pi_1(\mathcal{G}, T) = F(E(Y)) * \mathop{*}_{P \in V(Y)} \mathop{*}_{G_P}$$

modulo defining relations

$$\{x = 1 \qquad | x \in T$$
Definition (Graph of Groups)

A graph of groups \mathcal{G} is a connected graph Y = (V(Y), E(Y)) and

- for each vertex $P \in V(Y)$, a vertex group G_P ,
- ② for each edge $y \in E(Y)$, an edge group $G_y ≤ G_{s(y)}$.
- **3** for each $y \in E(Y)$, an isomorphism $f_y : G_y \to G_{\overline{y}}$ with $f_y \circ f_{\overline{y}} = \text{Id.}$

Definition (Fundamental group)

The fundamental group $\pi_1(\mathcal{G}, T)$ of a graph of groups \mathcal{G} over Y is the fundamental group of Y + elements of the respective vertex groups.

Let $T \subseteq E(Y)$ be a spanning tree of Y

$$\pi_1(\mathcal{G},T) = F(E(Y)) * \mathop{*}_{P \in V(Y)} G_P$$

modulo defining relations

$$\{x = 1, ya\overline{y} = f_y(a) \mid x \in T, y \in E(Y), a \in G_y \}$$

The fundamental group $\pi_1(\mathcal{G}, \mathcal{T})$ of a graph of groups \mathcal{G} over Y is the fundamental group of Y + elements of the respective vertex groups.

Let $T \subseteq E(Y)$ be a spanning tree of Y

$$\pi_1(\mathcal{G},T) = F(E(Y)) * \mathop{*}_{P \in V(Y)} G_P$$

modulo defining relations

$$\{x = 1, ya\overline{y} = f_y(a) \mid x \in T, y \in E(Y), a \in G_y \}$$

The fundamental group $\pi_1(\mathcal{G}, \mathcal{T})$ of a graph of groups \mathcal{G} over Y is the fundamental group of Y + elements of the respective vertex groups.

Let $T \subseteq E(Y)$ be a spanning tree of Y

$$\pi_1(\mathcal{G},T) = F(E(Y)) * \mathop{*}_{P \in V(Y)} G_P$$

modulo defining relations

$$\{x = 1, ya\overline{y} = f_y(a) \mid x \in T, y \in E(Y), a \in G_y \}$$

The fundamental group $\pi_1(\mathcal{G}, \mathcal{T})$ of a graph of groups \mathcal{G} over Y is the fundamental group of Y + elements of the respective vertex groups.

Let $T \subseteq E(Y)$ be a spanning tree of Y

$$\pi_1(\mathcal{G},T) = F(E(Y)) * \mathop{*}_{P \in V(Y)} G_P$$

modulo defining relations

$$\{x = 1, ya\overline{y} = f_y(a) \mid x \in T, y \in E(Y), a \in G_y \}$$

Example

 F_m

$$G_{y_1} = \{1\}$$

$$G_{y_2} = \{1\}$$

$$G_{y_m} = \{1\}$$

Armin Weiß

On the isomorphism problem for virtually free groups

The fundamental group $\pi_1(\mathcal{G}, T)$ of a graph of groups \mathcal{G} over Y is the fundamental group of Y + elements of the respective vertex groups.

Let $T \subseteq E(Y)$ be a spanning tree of Y

$$\pi_1(\mathcal{G},T) = F(E(Y)) * \mathop{*}_{P \in V(Y)} G_P$$

modulo defining relations

$$\{x = 1, ya\overline{y} = f_y(a) \mid x \in T, y \in E(Y), a \in G_y \}$$

Example

 $\mathrm{PSL}(2,\mathbb{Z})\cong\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/3\mathbb{Z}$

Armin Weiß

On the isomorphism problem for virtually free groups

The fundamental group $\pi_1(\mathcal{G}, \mathcal{T})$ of a graph of groups \mathcal{G} over Y is the fundamental group of Y + elements of the respective vertex groups.

Let $T \subseteq E(Y)$ be a spanning tree of Y

$$\pi_1(\mathcal{G}, T) = F(E(Y)) * \mathop{*}_{P \in V(Y)} \mathcal{G}_P$$

modulo defining relations

$$\{x = 1, ya\overline{y} = f_y(a) \mid x \in T, y \in E(Y), a \in G_y \}$$

Example

 $\mathsf{BS}_{p,q} = \langle a, y \mid ya^p y^{-1} = a^q \rangle$ edge groups $G_y = \langle a^p \rangle$ and $G_{\overline{y}} = \langle a^q \rangle$ and isomorphism $a^p \mapsto a^q$

A f. g. group is virtually free iff it is the fundamental group of a finite graph of groups with finite vertex groups.

A f. g. group is virtually free iff it is the fundamental group of a finite graph of groups with finite vertex groups.

Theorem (Guirardel, Levitt 07; Clay, Forester 09)

Let \mathcal{G}_1 and \mathcal{G}_2 be reduced finite graph of groups with finite vertex groups. Then $\pi_1(\mathcal{G}_1, \mathcal{T}_1) \cong \pi_1(\mathcal{G}_2, \mathcal{T}_2)$ iff \mathcal{G}_1 can be transformed into \mathcal{G}_2 by a sequence of slide moves.

A f. g. group is virtually free iff it is the fundamental group of a finite graph of groups with finite vertex groups.

Theorem (Guirardel, Levitt 07; Clay, Forester 09)

Let \mathcal{G}_1 and \mathcal{G}_2 be reduced finite graph of groups with finite vertex groups. Then $\pi_1(\mathcal{G}_1, \mathcal{T}_1) \cong \pi_1(\mathcal{G}_2, \mathcal{T}_2)$ iff \mathcal{G}_1 can be transformed into \mathcal{G}_2 by a sequence of slide moves.

If there is some $g \in G_P$ such that $g^{-1}G_x^x g \leq G_y^y$.

A f. g. group is virtually free iff it is the fundamental group of a finite graph of groups with finite vertex groups.

Theorem (Guirardel, Levitt 07; Clay, Forester 09)

Let \mathcal{G}_1 and \mathcal{G}_2 be reduced finite graph of groups with finite vertex groups. Then $\pi_1(\mathcal{G}_1, \mathcal{T}_1) \cong \pi_1(\mathcal{G}_2, \mathcal{T}_2)$ iff \mathcal{G}_1 can be transformed into \mathcal{G}_2 by a sequence of slide moves.

Corollary

It can be decided in NSPACE(*n*) whether $\pi_1(\mathcal{G}_1, T_1) \cong \pi_1(\mathcal{G}_2, T_2)$ given two graph of groups \mathcal{G}_1 and \mathcal{G}_2 with finite vertex groups.

A f. g. group is virtually free iff it is the fundamental group of a finite graph of groups with finite vertex groups.

Theorem (Guirardel, Levitt 07; Clay, Forester 09)

Let \mathcal{G}_1 and \mathcal{G}_2 be reduced finite graph of groups with finite vertex groups. Then $\pi_1(\mathcal{G}_1, \mathcal{T}_1) \cong \pi_1(\mathcal{G}_2, \mathcal{T}_2)$ iff \mathcal{G}_1 can be transformed into \mathcal{G}_2 by a sequence of slide moves.

Corollary

It can be decided in NSPACE(*n*) whether $\pi_1(\mathcal{G}_1, T_1) \cong \pi_1(\mathcal{G}_2, T_2)$ given two graph of groups \mathcal{G}_1 and \mathcal{G}_2 with finite vertex groups.

Krstić's proof.

- For both input groups guess a GoG + an isomorphism
- verify that the guesses are correct
- check the two GoGs for isomorphism

Armin Weiß

On the isomorphism problem for virtually free groups

- Guess a GoG + an isomorphism.
- Check that the guess is correct.
- Check the two GoGs for isomorphism.

Show that the GoG and the isomorphism are "small".

- Guess a GoG + an isomorphism.
- Check that the guess is correct.
- Check the two GoGs for isomorphism.

Show that the GoG and the isomorphism are "small".

- Guess a GoG + an isomorphism.
- Check that the guess is correct.
- Check the two GoGs for isomorphism.

Theorem (Sénizergues, W. 2018)

The following problem is in NTIME($2^{2^{\mathcal{O}(n)}}$): Input: a c.f grammar for WP(G), Compute a GoG \mathcal{G} with finite vertex groups and $\pi_1(\mathcal{G}, T) \cong G$

Show that the GoG and the isomorphism are "small".

- Guess a GoG + an isomorphism.
- Check that the guess is correct.
- Check the two GoGs for isomorphism.

Theorem (Sénizergues, W. 2018)

The following problem is in NTIME($2^{2^{\mathcal{O}(n)}}$): Input: a c.f grammar for WP(G), Compute a GoG \mathcal{G} with finite vertex groups and $\pi_1(\mathcal{G}, T) \cong G$

Theorem (Sénizergues, W. 2018)

The following problem is in NP: Input: a group G given as virtually free presentation, Compute a GoG \mathcal{G} with finite vertex groups and $\pi_1(\mathcal{G}, T) \cong G$.

Armin Weiß

Let G be given as context-free grammar of size $N \ge 4$ for WP(G). There is a graph of groups \mathcal{G} over Y and an isomorphism $\varphi : \pi_1(\mathcal{G}, T) \to G$ with

- $|V(Y)| \leq N^{50 \cdot 2^N}$
- $|G_P| \leq N^{50 \cdot 2^N} \text{ for all } P \in V(Y),$
- $|\varphi(a)| \leq 24 \cdot N^{175 \cdot 2^N} \text{ for every } a \in \Delta = \text{generating set of } \pi_1(\mathcal{G}, T).$

Let G be given as context-free grammar of size $N \ge 4$ for WP(G). There is a graph of groups \mathcal{G} over Y and an isomorphism $\varphi : \pi_1(\mathcal{G}, T) \to G$ with

- $|V(Y)| \leq N^{50 \cdot 2^N},$
- $|G_P| \leq N^{50 \cdot 2^N} \text{ for all } P \in V(Y),$
- Solution |φ(a)| ≤ 24 · N^{175·2^N} for every a ∈ Δ = generating set of π₁(G, T).
 → 2^{2^{O(N)}} size

Let G be given as context-free grammar of size $N \ge 4$ for WP(G). There is a graph of groups \mathcal{G} over Y and an isomorphism $\varphi : \pi_1(\mathcal{G}, T) \to G$ with

- $|V(Y)| \leq N^{50 \cdot 2^N},$
- $|G_P| \leq N^{50 \cdot 2^N} \text{ for all } P \in V(Y),$
- Solution |φ(a)| ≤ 24 · N^{175·2^N} for every a ∈ Δ = generating set of π₁(G, T).
 → 2^{2^{O(N)}} size

If G is given as virtually free presentation of size $M \ge 4$, then

- $|V(Y)| \leq M+1,$
- $|G_P| \leq M \text{ for all } P \in V(Y),$
- $|\varphi(a)| \leq 12(M+1)^6 \text{ for every } a \in \Delta.$

Let G be given as context-free grammar of size $N \ge 4$ for WP(G). There is a graph of groups \mathcal{G} over Y and an isomorphism $\varphi : \pi_1(\mathcal{G}, T) \to G$ with

- $|V(Y)| \leq N^{50 \cdot 2^N},$
- $|G_P| \le N^{50 \cdot 2^N} \text{ for all } P \in V(Y),$
- Solution |φ(a)| ≤ 24 · N^{175·2^N} for every a ∈ Δ = generating set of π₁(G, T).
 → 2^{2^{O(N)}} size

If G is given as virtually free presentation of size $M \ge 4$, then

- $|V(Y)| \leq M+1,$
- $|G_P| \leq M \text{ for all } P \in V(Y),$

3
$$|\varphi(a)| \leq 12(M+1)^6$$
 for every $a \in \Delta$.

 $\rightsquigarrow M^{\mathcal{O}(1)}$ size

Let Σ generate G and $p: \Sigma^* \to G$ the canonical projection. WP(G) = $p^{-1}(1) = \{ w \in \Sigma^* | w =_G 1 \}$ is context-free.

WP(G) = $p^{-1}(1) = \{ w \in \Sigma^* \mid w =_G 1 \}$ is context-free.

Guess the graph of groups G and a hom. φ : Δ* → Σ*, within the bounds of the Main Lemma (Δ = generators of π₁(G, T))

Let Σ generate G and $p: \Sigma^* \to G$ the canonical projection. WP(G) = $p^{-1}(1) = \{ w \in \Sigma^* \mid w =_G 1 \}$ is context-free.

• Guess the graph of groups \mathcal{G} and a hom. $\varphi : \Delta^* \to \Sigma^*$, within the bounds of the Main Lemma ($\Delta =$ generators of $\pi_1(\mathcal{G}, \mathcal{T})$)

- **2** Verify that φ induces a homomorphism $\tilde{\varphi} : \pi_1(\mathcal{G}, \mathcal{T}) \to \mathcal{G}$:
 - check whether $\varphi(r) =_G 1$ for all Relations r = 1 of $\pi_1(\mathcal{G}, \mathcal{T})$

WP(G) = $p^{-1}(1) = \{ w \in \Sigma^* \mid w =_G 1 \}$ is context-free.

- Guess the graph of groups G and a hom. φ : Δ* → Σ*, within the bounds of the Main Lemma (Δ = generators of π₁(G, T))
- **2** Verify that φ induces a homomorphism $\tilde{\varphi} : \pi_1(\mathcal{G}, \mathcal{T}) \to \mathcal{G}$:

• check whether $\varphi(r) =_G 1$ for all Relations r = 1 of $\pi_1(\mathcal{G}, \mathcal{T})$

3 Verify that $\tilde{\varphi}$ is injective:

• test whether
$$\varphi^{-1}(\underbrace{WP(G)}_{\text{context-free}}) \cap \underbrace{\{ \text{normal forms} \}}_{\text{regular}} = \{ \varepsilon \}$$

WP(G) = $p^{-1}(1) = \{ w \in \Sigma^* \mid w =_G 1 \}$ is context-free.

- Guess the graph of groups G and a hom. φ : Δ* → Σ*, within the bounds of the Main Lemma (Δ = generators of π₁(G, T))
- **2** Verify that φ induces a homomorphism $\tilde{\varphi} : \pi_1(\mathcal{G}, \mathcal{T}) \to \mathcal{G}$:
 - check whether $\varphi(r) =_{G} 1$ for all Relations r = 1 of $\pi_1(\mathcal{G}, \mathcal{T})$
- **3** Verify that $\tilde{\varphi}$ is injective:

• test whether
$$\varphi^{-1}(\underbrace{WP(G)}_{\text{context-free}}) \cap \underbrace{\{\text{normal forms}\}}_{\text{regular}} = \{\varepsilon\}$$

- Verify that φ is surjective:
 - for all $a \in \Sigma$ test if $a \in \{ \varphi(g) \mid g \in \Delta \}^*$ (rational subset membership)

WP(G) = $p^{-1}(1) = \{ w \in \Sigma^* \mid w =_G 1 \}$ is context-free.

- Guess the graph of groups G and a hom. φ : Δ* → Σ*, within the bounds of the Main Lemma (Δ = generators of π₁(G, T))
- **2** Verify that φ induces a homomorphism $\tilde{\varphi} : \pi_1(\mathcal{G}, \mathcal{T}) \to \mathcal{G}$:
 - check whether $\varphi(r) =_G 1$ for all Relations r = 1 of $\pi_1(\mathcal{G}, \mathcal{T})$
- **3** Verify that $\tilde{\varphi}$ is injective:
 - test whether $\varphi^{-1}(\underbrace{WP(G)}_{context-free}) \cap \underbrace{\{normal forms\}}_{regular} = \{\varepsilon\}$
- Verify that φ is surjective:
 - for all $a \in \Sigma$ test if $a \in \{ \varphi(g) \mid g \in \Delta \}^*$ (rational subset membership) $\iff WP(G) \cap a^{-1} \cdot \{ \varphi(g) \mid g \in \Delta \}^* \neq \emptyset$

Let G be a context-free group and N be the size of a c.f. grammar in Chomsky normal form for its word problem. Then

- $|H| \leq N^{12 \cdot 2^N + 10}$ for every finite subgroup $H \leq G$,
- every reduced graph of groups for G has at most $N^{12 \cdot 2^N + 11}$ edges.
- If G is given as virtually free presentation of size $M \ge 4$, then
 - $|G_P| \leq M$ for all $P \in V(Y)$,
 - $|V(Y)| \leq M+1$,

Let G be a context-free group and N be the size of a c.f. grammar in Chomsky normal form for its word problem. Then

- $|H| \leq N^{12 \cdot 2^N + 10}$ for every finite subgroup $H \leq G$,
- every reduced graph of groups for G has at most $N^{12 \cdot 2^N + 11}$ edges.
- If G is given as virtually free presentation of size $M \ge 4$, then
 - $|G_P| \leq M$ for all $P \in V(Y)$,
 - $|V(Y)| \leq M+1$,

 \rightsquigarrow remains to bound |arphi(a)| for $a\in\Delta$

Let G be a context-free group and N be the size of a c.f. grammar in Chomsky normal form for its word problem. Then

- $|H| \leq N^{12 \cdot 2^N + 10}$ for every finite subgroup $H \leq G$,
- every reduced graph of groups for G has at most $N^{12 \cdot 2^N + 11}$ edges.
- If G is given as virtually free presentation of size $M \ge 4$, then
 - $|G_P| \leq M$ for all $P \in V(Y)$,
 - $|V(Y)| \leq M+1$,

 \rightsquigarrow remains to bound |arphi(a)| for $a\in\Delta$

Idea: Follow the proof of the Muller-Schupp theorem by Diekert, W. 2013

Let G be a context-free group and N be the size of a c.f. grammar in Chomsky normal form for its word problem. Then

- $|H| \leq N^{12 \cdot 2^N + 10}$ for every finite subgroup $H \leq G$,
- every reduced graph of groups for G has at most $N^{12 \cdot 2^N + 11}$ edges.

If G is given as virtually free presentation of size $M \ge 4$, then

•
$$|G_P| \leq M$$
 for all $P \in V(Y)$,

• $|V(Y)| \leq M+1$,

 \rightsquigarrow remains to bound |arphi(a)| for $a\in\Delta$

Idea: Follow the proof of the Muller-Schupp theorem by Diekert, W. 2013

 \rightsquigarrow Rest of the talk

Muller and Schupp's Proof (1983)

• Every infinite virtually free group has more than one end. Example: $\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

- Stallings' Structure Theorem: every group with more than one end splits as HNN extension or amalgamated product over a finite subgroup.
- G finitely presented → G is accessible: this splitting happens only finitely many times (Dunwoody 1985).

Let $\Gamma(G)$ be the Cayley graph of a context-free group G. Then:

- $\Gamma(G)$ is quasi-isometric to a tree
- $\Gamma(G)$ has finite tree width

The Cayley graph of $\mathrm{PSL}(2,\mathbb{Z})\cong\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/3\mathbb{Z}$ has finite tree-width.

Let $\Gamma(G)$ be the Cayley graph of a context-free group G. Then:

- $\Gamma(G)$ is quasi-isometric to a tree
- $\Gamma(G)$ has finite tree width

 $\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

Let $\Gamma(G)$ be the Cayley graph of a context-free group G. Then:

- $\Gamma(G)$ is quasi-isometric to a tree
- $\Gamma(G)$ has finite tree width

Bass-Serre theory: an action on a tree with finite stabilizers and finitely many orbit gives us the graph of groups

Let $\Gamma(G)$ be the Cayley graph of a context-free group G. Then:

- $\Gamma(G)$ is quasi-isometric to a tree
- $\Gamma(G)$ has finite tree width

Bass-Serre theory: an action on a tree with finite stabilizers and finitely many orbit gives us the graph of groups

Aim: construct this tree

Let $\Gamma(G)$ be the Cayley graph of a context-free group G. Then:

- $\Gamma(G)$ is quasi-isometric to a tree
- $\Gamma(G)$ has finite tree width

Bass-Serre theory: an action on a tree with finite stabilizers and finitely many orbit gives us the graph of groups

Aim: construct this tree
- C and \overline{C} are non-empty and connected,
- the boundary δC (= edges from C to \overline{C}) is finite.

- C and \overline{C} are non-empty and connected,
- the boundary δC (= edges from C to \overline{C}) is finite.

- C and \overline{C} are non-empty and connected,
- the boundary δC (= edges from C to \overline{C}) is finite.

- C and \overline{C} are non-empty and connected,
- the boundary δC (= edges from C to \overline{C}) is finite.

- C and \overline{C} are non-empty and connected,
- the boundary δC (= edges from C to \overline{C}) is finite.

Definition

A tree set is a set of cuts $\mathcal C$ such that

•
$$\mathcal{C} \in \mathcal{C} \implies \overline{\mathcal{C}} \in \mathcal{C}$$
,

 $\bullet\,$ cuts in ${\cal C}$ are pairwise nested:

 $C \subseteq D$ or $C \subseteq \overline{D}$ or $D \subseteq C$ or $D \subseteq \overline{C}$ for all $C, D \in C$,

• the partial order (\mathcal{C}, \subseteq) is discrete:

 $\{ E \in \mathcal{C} \mid C \subseteq E \subseteq D \}$ if finite for all $C, D \in \mathcal{C}$.

Definition

A tree set is a set of cuts $\mathcal C$ such that

•
$$\mathcal{C} \in \mathcal{C} \implies \overline{\mathcal{C}} \in \mathcal{C}$$
,

 $\bullet\,$ cuts in ${\cal C}$ are pairwise nested:

$$C \subseteq D$$
 or $C \subseteq \overline{D}$ or $D \subseteq C$ or $D \subseteq \overline{C}$ for all $C, D \in C$,

• the partial order (\mathcal{C},\subseteq) is discrete:

 $\{ E \in \mathcal{C} \mid C \subseteq E \subseteq D \}$ if finite for all $C, D \in \mathcal{C}$.

Definition

A tree set is a set of cuts $\mathcal C$ such that

•
$$\mathcal{C} \in \mathcal{C} \implies \overline{\mathcal{C}} \in \mathcal{C}$$
,

 $\bullet\,$ cuts in ${\cal C}$ are pairwise nested:

$$C \subseteq D$$
 or $C \subseteq \overline{D}$ or $D \subseteq C$ or $D \subseteq \overline{C}$ for all $C, D \in \mathcal{C}$,

• the partial order (\mathcal{C},\subseteq) is discrete:

 $\{ E \in \mathcal{C} \mid C \subseteq E \subseteq D \}$ if finite for all $C, D \in \mathcal{C}$.

tree set = directed edge set of an (undirected) tree

Definition

A tree set is a set of cuts C such that

•
$$\mathcal{C} \in \mathcal{C} \implies \overline{\mathcal{C}} \in \mathcal{C}$$
,

• cuts in C are pairwise nested:

$$C \subseteq D$$
 or $C \subseteq \overline{D}$ or $D \subseteq C$ or $D \subseteq \overline{C}$ for all $C, D \in C$,

• the partial order (\mathcal{C}, \subseteq) is discrete:

 $\{ E \in \mathcal{C} \mid C \subseteq E \subseteq D \}$ if finite for all $C, D \in \mathcal{C}$.

tree set = directed edge set of an (undirected) tree

vertices = equivalence classes of edges:

20/32

vertices = equivalence classes of edges:

Definition

For C, $D \in C$ the relation $C \sim D$ is defined as follows:

Either
$$C = D$$
,
or $\overline{C} \subsetneqq D$ and there is no $E \in C$ with $\overline{C} \subsetneqq E \subsetneqq D$.

vertices = equivalence classes of edges:

Definition

For C, $D \in C$ the relation $C \sim D$ is defined as follows:

Either C = D, or $\overline{C} \subsetneqq D$ and there is no $E \in C$ with $\overline{C} \subsetneqq E \subsetneqq D$.

Proposition (Dunwoody, 1979)

The graph $T(\mathcal{C})$ is a tree, where

$$\begin{array}{l} \textit{Vertices: } V(T(\mathcal{C})) = \{ [C] \mid C \in \mathcal{C} \} \,, \\ \textit{Edges: } E(T(\mathcal{C})) = \big\{ \left\{ [C], [\overline{C}] \right\} \mid C \in \mathcal{C} \big\} \end{array}$$

Armin Weiß

Cuts in a graph

The Cayley graph of $PSL(2, \mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z}$.

Vertices in the structure tree

Three cuts in one equivalence class = one vertex in T(C).

23/32

- $\bullet\,$ find a structure tree for an arbitrary locally finite, connected graph $\Gamma\,$
- if Γ is tree-like, the structure tree should be locally finite
 → every bi-infinite geodesic should be split by some cut

Aims:

- $\bullet\,$ find a structure tree for an arbitrary locally finite, connected graph $\Gamma\,$
- if Γ is tree-like, the structure tree should be locally finite
 → every bi-infinite geodesic should be split by some cut

First idea: take all cuts

Aims:

- $\bullet\,$ find a structure tree for an arbitrary locally finite, connected graph $\Gamma\,$
- if Γ is tree-like, the structure tree should be locally finite
 → every bi-infinite geodesic should be split by some cut

First idea: take all cuts

Problems:

not nested

- $\bullet\,$ find a structure tree for an arbitrary locally finite, connected graph $\Gamma\,$
- if Γ is tree-like, the structure tree should be locally finite
 → every bi-infinite geodesic should be split by some cut

- $\bullet\,$ find a structure tree for an arbitrary locally finite, connected graph $\Gamma\,$
- if Γ is tree-like, the structure tree should be locally finite
 → every bi-infinite geodesic should be split by some cut

- $\bullet\,$ find a structure tree for an arbitrary locally finite, connected graph $\Gamma\,$
- if Γ is tree-like, the structure tree should be locally finite
 → every bi-infinite geodesic should be split by some cut

- $\bullet\,$ find a structure tree for an arbitrary locally finite, connected graph $\Gamma\,$
- if Γ is tree-like, the structure tree should be locally finite
 → every bi-infinite geodesic should be split by some cut

Minimal cuts = cuts which are minimal splitting a bi-infinite geodesic.

- $C \in \mathcal{C}_{\min}(\alpha)$
- $D \in \mathcal{C}(\alpha) \cap \mathcal{C}_{\mathsf{min}}$ but $D \notin \mathcal{C}_{\mathsf{min}}(\alpha)$
- $E \not\in \mathcal{C}_{min}$

Armin Weiß

A graph Γ is accessible iff $\exists K \in \mathbb{N}$ with $|\delta C| \leq K$ for all $C \in \mathcal{C}_{\min}$.

A graph Γ is accessible iff $\exists K \in \mathbb{N}$ with $|\delta C| \leq K$ for all $C \in \mathcal{C}_{\min}$.

• There are non-accessible graphs:

A graph Γ is accessible iff $\exists K \in \mathbb{N}$ with $|\delta C| \leq K$ for all $C \in C_{\min}$.

• There are non-accessible graphs.

Theorem (Thomassen, Woess, 1993)

G is accessible iff its Cayley graph Γ is accessible.

Theorem (Dunwoody, 1993)

There is a non-accessible group.

• ~> There are non-accessible Cayley graphs.

But: every Cayley graph you can draw in a meaningful way is accessible.

• ~> Tree-like Cayley graphs are accessible.

Lemma

The partial order $(\mathcal{C}_{\min}, \subseteq)$ is discrete iff Γ is accessible.

Lemma

The partial order (C_{\min}, \subseteq) is discrete iff Γ is accessible.

Lemma

Fix $K \in \mathbb{N}$ and an edge e of Γ . There are only finitely many cuts C with $e \in \delta C$ and $|\delta C| \leq K$.

Lemma

The partial order (C_{\min}, \subseteq) is discrete iff Γ is accessible.

Lemma

Fix $K \in \mathbb{N}$ and an edge e of Γ . There are only finitely many cuts C with $e \in \delta C$ and $|\delta C| \leq K$.

Proof (Thomassen, Woess, 1993).

 $\mathcal{C}_{\Gamma,e}^{\mathcal{K}} = \text{cuts in } \Gamma \text{ with } e \in \delta C \text{ and } |\delta C| \leq \mathcal{K}.$

Lemma

The partial order (C_{\min}, \subseteq) is discrete iff Γ is accessible.

Lemma

Fix $K \in \mathbb{N}$ and an edge e of Γ . There are only finitely many cuts C with $e \in \delta C$ and $|\delta C| \leq K$.

Proof (Thomassen, Woess, 1993).

 $C_{\Gamma,e}^{K} = \text{cuts in } \Gamma \text{ with } e \in \delta C \text{ and } |\delta C| \leq K.$ Induction on K: the case K = 1 is trivial.

Lemma

The partial order (C_{\min}, \subseteq) is discrete iff Γ is accessible.

Lemma

Fix $K \in \mathbb{N}$ and an edge e of Γ . There are only finitely many cuts C with $e \in \delta C$ and $|\delta C| \leq K$.

Proof (Thomassen, Woess, 1993).

 $C_{\Gamma,e}^{K} = \text{cuts in } \Gamma \text{ with } e \in \delta C \text{ and } |\delta C| \leq K.$ Induction on K: the case K = 1 is trivial.

Let K > 1 and $e = \{u, v\}$ and let e_1, \ldots, e_m be a path from u to v.

Lemma

The partial order (C_{\min}, \subseteq) is discrete iff Γ is accessible.

Lemma

Fix $K \in \mathbb{N}$ and an edge e of Γ . There are only finitely many cuts C with $e \in \delta C$ and $|\delta C| \leq K$.

Proof (Thomassen, Woess, 1993).

$$C_{\Gamma,e}^{K} = \text{cuts in } \Gamma \text{ with } e \in \delta C \text{ and } |\delta C| \leq K.$$

Induction on K : the case $K = 1$ is trivial.

Let K > 1 and $e = \{u, v\}$ and let e_1, \ldots, e_m be a path from u to v. Then

$$\mathcal{C}_{\Gamma,e}^{K} \subseteq \bigcup_{i=1}^{k} \mathcal{C}_{\Gamma-e,e_{i}}^{K-1}.$$

Minimal cuts still might not be nested:

Minimal cuts still might not be nested:

Minimal cuts still might not be nested:

But, then we can switch to a subset.

Let $C, D \in \mathcal{C}_{min}$ not nested:

Let $C, D \in \mathcal{C}_{min}$ not nested:

Let $C, D \in \mathcal{C}_{\min}$ not nested:

Let $C, D \in \mathcal{C}_{min}$ not nested:

Let $C, D \in \mathcal{C}_{min}$ not nested:

 \rightsquigarrow take *E* and *E'* instead of *C* and *D*.

Armin Weiß

Optimal cuts

A cut C is optimal, if

- $\mathcal{C} \in \mathcal{C}_{\min}(lpha)$ for some bi-infinite geodesic lpha and
- the number of non-nested cuts is minimal among $\mathcal{C}_{\min}(\alpha)$.

Theorem (Diekert, W. 13)

For a tree-like Cayley graph $\Gamma,$ the subset $\mathcal{C}_{\mathrm{opt}}\subseteq\mathcal{C}_{\mathsf{min}}$ satisfies:

• optimal cuts form a tree set,

- $\mathcal{C}\in\mathcal{C}_{\min}(lpha)$ for some bi-infinite geodesic lpha and
- the number of non-nested cuts is minimal among $\mathcal{C}_{\min}(\alpha)$.

Theorem (Diekert, W. 13)

For a tree-like Cayley graph $\Gamma,$ the subset $\mathcal{C}_{\mathrm{opt}}\subseteq\mathcal{C}_{\mathsf{min}}$ satisfies:

- optimal cuts form a tree set,
- every bi-infinite geodesic is split by an optimal cut,

- $\mathcal{C} \in \mathcal{C}_{\min}(lpha)$ for some bi-infinite geodesic lpha and
- the number of non-nested cuts is minimal among $\mathcal{C}_{\min}(\alpha)$.

Theorem (Diekert, W. 13)

For a tree-like Cayley graph $\Gamma,$ the subset $\mathcal{C}_{\mathrm{opt}}\subseteq \mathcal{C}_{\mathsf{min}}$ satisfies:

- optimal cuts form a tree set,
- every bi-infinite geodesic is split by an optimal cut,
- $\bullet~$ G acts on $\mathcal{C}_{\mathrm{opt}}$ with finitely many orbits,

- $\mathcal{C}\in\mathcal{C}_{\min}(lpha)$ for some bi-infinite geodesic lpha and
- the number of non-nested cuts is minimal among $\mathcal{C}_{\min}(\alpha)$.

Theorem (Diekert, W. 13)

For a tree-like Cayley graph $\Gamma,$ the subset $\mathcal{C}_{\mathrm{opt}}\subseteq\mathcal{C}_{\mathsf{min}}$ satisfies:

- optimal cuts form a tree set,
- every bi-infinite geodesic is split by an optimal cut,
- $\bullet~$ G acts on $\mathcal{C}_{\mathrm{opt}}$ with finitely many orbits,
- equivalence classes [C] are finite.

- $\mathcal{C}\in\mathcal{C}_{\min}(lpha)$ for some bi-infinite geodesic lpha and
- the number of non-nested cuts is minimal among $\mathcal{C}_{\min}(\alpha)$.

Theorem (Diekert, W. 13)

For a tree-like Cayley graph $\Gamma,$ the subset $\mathcal{C}_{\mathrm{opt}}\subseteq \mathcal{C}_{\mathsf{min}}$ satisfies:

- optimal cuts form a tree set,
- every bi-infinite geodesic is split by an optimal cut,
- G acts on $\mathcal{C}_{\mathrm{opt}}$ with finitely many orbits,
- equivalence classes [C] are finite.

 \rightsquigarrow G acts on the tree T(C_{\rm opt}) with finitely many orbits and finite vertex stabilizers.

- $\mathcal{C}\in\mathcal{C}_{\min}(lpha)$ for some bi-infinite geodesic lpha and
- the number of non-nested cuts is minimal among $\mathcal{C}_{\min}(\alpha)$.

Theorem (Diekert, W. 13)

For a tree-like Cayley graph $\Gamma,$ the subset $\mathcal{C}_{\mathrm{opt}}\subseteq\mathcal{C}_{\mathsf{min}}$ satisfies:

- optimal cuts form a tree set,
- every bi-infinite geodesic is split by an optimal cut,
- $\bullet~G$ acts on $\mathcal{C}_{\mathrm{opt}}$ with finitely many orbits,
- equivalence classes [C] are finite.

 \rightsquigarrow G acts on the tree $T(\mathcal{C}_{\mathrm{opt}})$ with finitely many orbits and finite vertex stabilizers.

 $G \setminus T(\mathcal{C}_{\mathrm{opt}})$ is the desired graph of groups (resp. a reduced subset of $\mathcal{C}_{\mathrm{opt}}$).

Armin Weiß

Back to the isomorphism problem: Roadmap for Proving the Main Lemma

Aim: find "small" isomorphism φ

•
$$\varphi(g) = g$$
 for $g \in G_P = \operatorname{Stab}(P)$

• $\varphi(y)$ conjugates elements of G_P into the stabilizer of some nearby $Q \in V(T(C_{opt}))$

Back to the isomorphism problem: Roadmap for Proving the Main Lemma

Aim: find "small" isomorphism φ

•
$$\varphi(g) = g$$
 for $g \in G_P = \operatorname{Stab}(P)$

• $\varphi(y)$ conjugates elements of G_P into the stabilizer of some nearby $Q \in V(T(C_{opt}))$

Show:

- boundaries of minimal cuts are small
- equivalent cuts are not far apart

 \rightsquigarrow find representatives for $T(\mathcal{C}_{opt})$ within $B(2^{2^{\mathcal{O}(N)}})$ (resp. $B(N^{\mathcal{O}(1)})$)

 Isomorphism test for fundamental groups of GoGs with finite vertex groups is in NSPACE(n).

- Isomorphism test for fundamental groups of GoGs with finite vertex groups is in NSPACE(n).
- Given a context-free grammar, we can compute the GoG in NTIME(2^{2^{O(n)}}).

- Isomorphism test for fundamental groups of GoGs with finite vertex groups is in NSPACE(n).
- Given a context-free grammar, we can compute the GoG in NTIME(2^{2^{O(n)}}).
- Given a virtually free presentation, we can compute the GoG in NP.

- Isomorphism test for fundamental groups of GoGs with finite vertex groups is in NSPACE(n).
- Given a context-free grammar, we can compute the GoG in NTIME(2^{2^{O(n)}}).
- Given a virtually free presentation, we can compute the GoG in NP.
- Bounds via cuts in the structure tree.

- Isomorphism test for fundamental groups of GoGs with finite vertex groups is in NSPACE(n).
- Given a context-free grammar, we can compute the GoG in NTIME(2^{2^{O(n)}}).
- Given a virtually free presentation, we can compute the GoG in NP.
- Bounds via cuts in the structure tree.

• Precise complexity bounds.

- Isomorphism test for fundamental groups of GoGs with finite vertex groups is in NSPACE(n).
- Given a context-free grammar, we can compute the GoG in NTIME(2^{2^{O(n)}}).
- Given a virtually free presentation, we can compute the GoG in NP.
- Bounds via cuts in the structure tree.

- Precise complexity bounds.
- What about other groups (e.g. hyperbolic)?

- Isomorphism test for fundamental groups of GoGs with finite vertex groups is in NSPACE(n).
- Given a context-free grammar, we can compute the GoG in NTIME(2^{2^{O(n)}}).
- Given a virtually free presentation, we can compute the GoG in NP.
- Bounds via cuts in the structure tree.

- Precise complexity bounds.
- What about other groups (e.g. hyperbolic)?
- Algorithm for finding structure trees for finite graphs?

- Isomorphism test for fundamental groups of GoGs with finite vertex groups is in NSPACE(n).
- Given a context-free grammar, we can compute the GoG in NTIME(2^{2^{O(n)}}).
- Given a virtually free presentation, we can compute the GoG in NP.
- Bounds via cuts in the structure tree.

- Precise complexity bounds.
- What about other groups (e.g. hyperbolic)?
- Algorithm for finding structure trees for finite graphs?

Thank you!