We deal with frequency computations in polynomial time, or more general with resource bounded frequency computations. We investigate the first non-trivial case of the Hinrichs-Wechsung conjecture, which states that as soon as we have at least 2d+d inputs to be queried, it does not become harder to get an answer with at most d errors, if we increase the number of inputs to be queried. This conjecture can easily be seen to hold for cases d less than 3, and it seems very hard to prove in general. We solve the problem affirmatively in the case d=3.

The paper

The executable file

The program’s output

The program in pseudo-code


[Apr’18] The paper “The isomorphism problem for finite extensions of free groups is in PSPACE” by Géraud Sénizergues and Armin Weiß was accepted at ICALP 2018.

[Apr’18] The paper “On the Complexity of the Cayley Semigroup Membership Problem” by Lukas Fleischer was accepted at CCC 2018.

[Jan’18] On March 24-29, 2019 Volker Diekert, Markus Lohrey, Olga Kharlampovich and Alexei Miasnikov will organize the Schloss Dagstuhl Seminar “Algorithmic Problems in Group Theory”.

[Dec’17] The paper “The Intersection Problem for Finite Monoids” by Lukas Fleischer and Manfred Kufleitner was accepted at STACS 2018.

[Jun’17] At the 12th International Computer Science Symposium in Russia (CSR), Lukas Fleischer and Manfred Kufleitner received a Best Paper Award for their publication “Green’s Relations in Finite Transformation Semigroups”, and Armin Weiss received a Best Paper Award for “The conjugacy problem in free solvable groups and wreath product of abelian groups is in $\text{TC}^0$ \text{TC}^0 “ which is joint work with Alexei Miasnikov and Svetla Vassileva.