Zweites Beispiel

Wir gehen von der folgenden Grammatik aus:

$$S \rightarrow aSb \mid cD \mid B$$

$$B \rightarrow Sb$$

$$D \rightarrow cD \mid cBB \mid c$$

Die einzige Regel der Form (u, v) mit $v \in V$ ist die Regel $S \to B$.

1) Ringableitungen entfernen

Es sind keine Ringableitungen vorhanden, also nichts zu tun in diesem Punkt.

- 2) Variablen anordnen Die Anordnung $A_1 = S$, $A_2 = B$, $A_3 = D$ erfüllt den Zweck.
- 3) Abkürzungen verwenden Die Regel $S \rightarrow B$ wird gestrichen, $S \rightarrow Sb$ dafür dazu genommen.

Beispiel 2, Fortsetzung

4) Pseudoterminale einführen

Ergänze Regeln $V_a \rightarrow a$, $V_b \rightarrow b$, $V_c \rightarrow c$ und erhalte:

$$S
ightarrow V_a S V_b \mid V_c D \mid S V_b$$
 $V_a
ightarrow a$ $V_b
ightarrow b$ $V_b
ightarrow b$ $V_b
ightarrow b$ $V_c
ightarrow c$

5) $S \rightarrow V_a S V_b$ und $D \rightarrow V_c B B$ jeweils durch 2 Regeln ersetzen.

Wir verwenden neue Variablen X und Y und erhalten:

$$S o V_a X \mid V_c D \mid SV_b$$
 $X o SV_b$ $V_a o a$ $V_b o b$ $V_b o b$ $V_c o C$

Drittes Beispiel

Jetzt betrachten wir die folgende Grammatik:

$$S \rightarrow A \mid aB \mid aC$$

$$A \rightarrow B \mid C \mid cAd$$

$$B \rightarrow S \mid Ba$$

$$C \rightarrow D \mid c$$

$$D \rightarrow d \mid dDD$$

 $S, A, B \in V$ bilden einen Ring, also ersetzen wir sie durch X:

$$X \rightarrow aX \mid aC \mid C \mid cXd \mid Xa$$
 $C \rightarrow D \mid c$

$$C \rightarrow D \mid c$$

$$D \rightarrow d \mid dDD$$

Die Anordnung muss der Reihenfolge X vor C vor D folgen:

$$D \rightarrow d \mid dDD$$

$$C \rightarrow d \mid dDD \mid c$$

$$X \rightarrow d \mid dDD \mid c \mid aX \mid aC \mid cXd \mid Xa$$

Beispiel 3, Fortsetzung

Einführung von Pseudoterminalen V_a , V_c und V_d :

$$D
ightarrow d \mid V_d DD \mid c$$
 $C
ightarrow d \mid V_d DD \mid c$ $X
ightarrow d \mid V_d DD \mid c \mid V_a X \mid V_a C \mid V_c X V_d \mid X V_a$ $V_a
ightarrow a$ $V_c
ightarrow c$ $V_d
ightarrow d$

Jetzt nutzen wir aus, dass V_dDD dreimal vorkommt, daher verwenden wir dreimal $Y \rightarrow DD$:

$$D
ightarrow d \mid V_d Y \qquad \qquad C
ightarrow d \mid V_d Y \mid c \ X
ightarrow d \mid V_d Y \mid c \mid V_a X \mid V_a C \mid V_c Z \mid X V_a \ V_a
ightarrow a \qquad \qquad V_c
ightarrow c \qquad V_d
ightarrow d \ Y
ightarrow DD \qquad Z
ightarrow X V_d$$

Einheit 21 – Folie 21.4 – 05.12.2019

Satz (Greibach-Normalform)

Zur Erinnerung: Eine Typ-2 Grammatik ist in GNF, wenn für alle $(u, v) \in P$ gilt: $v \in \Sigma V^*$.

Satz: Zu jeder kontextfreien Grammatik Gmit $\varepsilon \notin L(G)$ gibt es eine Grammatik G' in Greibach-Normalform, so dass

$$L(G) = L(G')$$

gilt.

Auch hier besteht der Beweis wieder darin, dass wir eine Strategie angeben, wie eine beliebige Typ-2 Grammatik in eine äquivalente Typ-2 Grammatik in GNF umgewandelt werden kann.

Beseitigung von Linksrekursion

Wir können jederzeit für jede Variable A die Regeln der Form (A, v) aus P in zwei Gruppen aufteilen, nämlich die, bei denen v = Ax für ein $x \neq \varepsilon$ gilt, und die, bei denen v nicht mit A beginnt:

$$A \rightarrow A\alpha_1 | A\alpha_2 | \dots | A\alpha_k | \beta_1 | \beta_2 | \dots | \beta_\ell$$

Diese $k + \ell$ Regeln können durch die folgenden $2k + 2\ell$ Regeln äquivalent ersetzt werden (mit neuer Variable B):

$$A \to \beta_1 | \beta_2 | \dots | \beta_{\ell}$$

$$A \to \beta_1 B | \beta_2 B | \dots | \beta_{\ell} B$$

$$B \to \alpha_1 | \alpha_2 | \dots | \alpha_k$$

$$B \to \alpha_1 B | \alpha_2 B | \dots | \alpha_k B$$

Hier sind keine linksrekursiven Regeln mehr vorhanden!

Der erste Algorithmus

Der erste von zwei Algorithmen, die zusammen die GNF erzeugen, hat zum Ziel, dass Regeln $A_i \to A_j \beta$ nur mit i < j vorkommen. Dabei sei $V = \{A_1, \ldots, A_m\}$, d.h. Variablen sind nummeriert.

```
FOR i:=1 TO m DO FOR j:=1 TO i-1 DO FORALL A_i \to A_j \alpha \in P DO IF A_j \to \beta_1 \mid \ldots \mid \beta_r alle A_j-Regeln in P THEN Nimm A_i \to \beta_1 \alpha \mid \ldots \mid \beta_r \alpha zu P hinzu; Streiche A_i \to A_j \alpha aus P heraus; ENDIF ENDFORALL ENDFOR Entferne Linksrekursion bzgl. A_i; ENDFOR
```

Damit ist das Ziel erreicht, dass $A_i \rightarrow A_i \beta$ nur mit i < j vorkommt.

Einheit 21 – Folie 21.7 – 05.12.2019