kgV: Zum Beweis des Satzes

Wir wollen zeigen, dass für $n \ge 3$ gilt: $kgV(n) > 2^{n-1}$.

Klar ist:
$$\binom{n}{\lceil \frac{n}{2} \rceil} \ge \frac{2^n}{n}$$
, also folgt $\frac{n}{2} \cdot \binom{n}{\lceil \frac{n}{2} \rceil} \ge 2^{n-1}$

Mit dem Lemma erhalten wir nun:

$$kgV(n) \geq \lceil \frac{n}{2} \rceil \cdot \binom{n}{\lceil \frac{n}{2} \rceil} \geq \frac{n}{2} \cdot \binom{n}{\lceil \frac{n}{2} \rceil} \geq 2^{n-1}$$

Tatsächlich gilt sogar:

$$2^n < kgV(n) \le 4^{n-1}$$

Die erste Ungleichung ist etwas schwerer zu zeigen als unser Satz, und sie gilt tatsächlich auch erst ab n=7.

Benutze hier $\frac{n}{2} \le m \le n \implies kgV(n)$ teilt $kgV(m) \cdot \binom{n}{m}$. Leicht zu sehen

Es folgt
$$kgV(2m) \le kgV(m) \cdot {2m \choose m} \le kgV(m) \cdot 4^m \le 4^{2m-1}$$

Der Fall für ungerade Zahlen geht ähnlich - bitte selbst versuchen...

Einheit 33 – Folie 33.1 – 16.01.2020

Primzahldichte

Wir setzen $\pi(n) = \text{Anzahl der Primzahlen } p \text{ mit } 1$

Es gilt
$$kgV(n) = \prod_{p \le n, p \text{ prim}} p^{\lfloor \log_p n \rfloor} \le \prod_{p \le n, p \text{ prim}} n = n^{\pi(n)}$$
.

Und mit $kgV(n) > 2^n$ folgt hieraus für alle $n \ge 4$:

$$\pi(n) \ge \frac{n}{\log_2 n}$$

Andererseits wissen wir:

$$\prod_{p \le n, p \text{ prim}} p \le kgV(n) \le 4^{n-1}$$

und für alle t < n

$$t^{\pi(n)-\pi(t)} \leq \prod_{t$$

Einheit 33 – Folie 33.2 – 16.01.2020

Primzahldichte, Fortsetzung

Wir hatten:
$$t^{\pi(n)-\pi(t)} \leq \prod p \leq kgV(n) < 4^n = 2^{2n}$$

t

Es folgt:

$$(\pi(n) - \pi(t)) \cdot \log_2 t < 2n$$

Also:

$$\pi(n) \cdot \log_2 t < 2n + \pi(t) \cdot \log_2 t \le 2n + t \cdot \log_2 t$$

Und damit:

$$\pi(n) < \frac{2n}{\log_2 t} + t$$

Nun setzen wir $t = \frac{n}{(\log_2 n)^2}$ und erhalten

$$\pi(n) < \frac{2n}{\log_2 n - 2\log_2 \log_2 n} + \frac{n}{(\log_2 n)^2}$$

Schließlich stellen wir fest, dass der letzte Ausdruck asymptotisch gegen die Summe $\frac{2n}{\log_2 n} + \frac{n}{(\log_2 n)^2}$ strebt, die nach oben durch $\frac{(2+\varepsilon)n}{\log_2 n}$ abgeschätzt werden kann.

Satz über die Primzahldichte

Wir fassen das gezeigte in einem Satz zusammen:

Satz:
$$\frac{n}{\log_2 n} \le \pi(n) \le \frac{(2+\varepsilon)n}{\log_2 n}$$

Tatsächlich weiß man, dass $\pi(n)$ asymptotisch wächst wie

$$\frac{n}{\ln n} = \log_2 e \cdot \frac{n}{\log_2 n}$$

Dabei ist $\log_2 e$ ungefähr der Wert 1,4.

Bertrand'sches Postulat

Der folgende Satz wird als das Bertrand'sche Postulat bezeichnet:

Satz: Für alle $n \ge 1$ existiert eine Primzahl p, so dass

$$n$$

Für $n \le 4048$ kann man das durch Anschauen der Liste aller Primzahlen bis zu diesem Wert leicht überprüfen.

Sei nun also n > 4048.

Wir schreiben $n = \prod_{p} p^{e_p(n)}$ und verwenden $n\binom{2n}{n} | kgV(2n)$.

Es folgt $e_p(\binom{2n}{n}) \le e_p(kgV(2n)) \le \log_p(2n)$, also $p^{e_p(\binom{2n}{n})} \le 2n$.

Also gilt für jede Primzahl p mit $p > \sqrt{2n}$, dass $e_p(\binom{2n}{n}) \in \{0,1\}$.

Einheit 33 – Folie 33.5 – 16.01.2020

Bertrand'sches Postulat (Forts.)

Für jede Primzahl p mit $p > \sqrt{2n}$ gilt $e_p(\binom{2n}{n}) \in \{0, 1\}$. Aber wenn $\frac{2}{3}n , dann ist sogar nur die 0 möglich!$

Es folgt:
$$\frac{4^n}{2n} \leq \binom{2n}{n} \leq (\prod 2n) \cdot (\prod p) \cdot (\prod p)$$
.

Hierbei läuft das erste Produkt über alle $p \le \sqrt{2n}$, das zweite über $\sqrt{2n} und das letzte über <math>n \le p \le 2n$.

Daher folgt
$$2^{2n} = 4^n \le 2n \cdot (2n^{\sqrt{2n}-1}) \cdot 4^{\frac{2}{3}n} \cdot \prod_{n .$$

Nun setzen wir m = 2n und teilen durch 2^m . Das ergibt:

$$1 \le m^{\sqrt{m}} \cdot 2^{-\frac{1}{3}m} \cdot \prod_{n$$

$$2^{\frac{1}{3}m - \sqrt{m}\log m} \le \prod_{n$$

Bei genügend großem *m* ist die linke Seite größer 1

Einheit 33 – Folie 33.6 – 16.01.2020