Vorlesung

Manfred Kufleitner

Termine

Zeit Raum
Do 15:45-17:15 V47.02
Mi 17:30-19:00 V47.02

Inhalt

Der erste Teil der Vorlesung (ca. 10 Doppelstunden) orientiert sich an dem Buch ALGORITHMIK von Uwe Schöning (Spektrum Lehrbuch).

Danach gibt es einen zweiten Teil (ca. 9 Doppelstunden), in dem das Thema Diskrete Strukturen behandelt wird. Für diesen Teil dient als Grundlage das Buch ELEMENTE DER DISKRETEN MATHEMATIK von Diekert, Kufleitner, Rosenberger.

Übungen

Florian Stober

Termine

Gruppe Tutor Zeit Raum Blatt 1 Blatt 2 Blatt 3 Blatt 4 Blatt 5 Blatt 6
01 B. Ariguib Di 17:30 V47.05 16.11. 30.11. 14.12. 11.1. 25.1. 8.2.
02 P. Walter Di 17:30 V47.06 16.11. 30.11. 14.12. 11.1. 25.1. 8.2.
03 C. Mattes Mo 14:00 0.108 15.11. 29.11. 13.12. 10.1. 24.1. 7.2.
04 M. Schwarzer Fr 15:45 V38.03 5.11. 19.11. 3.12. 17.12. 21.1. 4.2.
05 D. Aust Di 15:45 Online 16.11. 30.11. 14.12. 11.1. 25.1. 8.2.
06 S. Lenk Mi 11:30 Online 17.11. 1.12. 15.12. 12.1. 26.1. 9.2.
07 B. Ariguib Di 17:30 V47.05 9.11. 23.11. 7.12. 21.12. 18.1. 1.2.
08 P. Walter Di 17:30 V47.06 9.11. 23.11. 7.12. 21.12. 18.1. 1.2.
09 M. Gaißert Mo 14:00 0.108 8.11. 22.11. 6.12. 20.12. 17.1. 31.1.
10 M. Gaißert Fr 15:45 V38.03 12.11. 26.11. 10.12. 14.1. 28.1. 11.2.
11 F. Stober Di 15:45 Online 9.11. 23.11. 7.12. 21.12. 18.1. 1.2.
12 S. Lenk Mi 11:30 Online 10.11. 24.11. 8.12. 22.12. 19.1. 2.2.

Anmeldung und Ablauf

  • Die Anmeldung zu den Übungen erfolgt über Campus.
  • Wenn bereits alle Übungen belegt sind, melden Sie sich für die Warteliste einer Übung mit möglichst kurzer Warteliste an.
  • Es gibt sowohl Übungsgruppen die in Präsenz stattfinden, als auch Übungsgruppen die rein Online stattfinden.
  • Die Abgaben erfolgen über ILIAS.
  • Weitere Informationen zum Ablauf der Übungen finden Sie auf dem ersten Übungsblatt.

Scheinkriterien

Zur Teilnahme an der Modulprüfung Theoretische Informatik III benötigen Sie einen Übungsschein. Einen Übungsschein erhält, wer mindestens 50% aller erreichbaren Punkte in den schriftlichen Abgaben erreicht und sich aktiv an den Übungen beteiligt hat.

Literatur

Algorithmen:

  • Uwe Schöning: Algorithmik. Springer Spektrum, 2001.
  • Vorlesungsskript zur Diplomvorlesung Entwurf und Analyse von Algorithmen

Diskrete Strukturen:

  • Volker Diekert, Manfred Kufleitner, Gerhard Rosenberger: Elemente der Diskreten Mathematik. Walter de Gruyter, 2013.

News

[Jun’23] The paper “Parallel algorithms for power circuits and the word problem of the Baumslag group” by Caroline Mattes and Armin Weiß has been accepted at Computational Complexity.

[Oct’22] The paper “Lower Bounds for Sorting 16, 17, and 18 Elements” by Florian Stober and Armin Weiß has been accepted at ALENEX 2023.

[Sep’22] The paper “Conelikes and Ranker Comparisons” by Viktor Henriksson and Manfred Kufleitner has been accepted at LATIN 2022.

[Sep’22] The paper “Improved Parallel Algorithms for Generalized Baumslag Groups” by Caroline Mattes and Armin Weiß has been accepted at LATIN 2022.

[Apr’22] The paper “Reachability Games and Parity Games” by Volker Diekert and Manfred Kufleitner has been accepted at ICTAC 2022.

[Apr’22] The paper “Satisfiability Problems for Finite Groups” by Pawel M. Idziak, Piotr Kawalek, Jacek Krzaczkowski and Armin Weiß has been accepted at ICALP 2022.

[Mar’22] The paper “The Power Word Problem in Graph Products” by Florian Stober and Armin Weiß was accepted at DLT 2022.

[Nov’20] Volker Diekert is Partner Investigator in the Australian ARC grant “Geodetic groups: foundational problems in algebra and computer science” at University of Technology Sydney.

[Apr’20] The paper “Groups with ALOGTIME-hard word problems and PSPACE-complete circuit value problems” by Laurent Bartholdi, Michael Figelius, Markus Lohrey and Armin Weiß has been accepted at CCC 2020.

[Apr’20] The paper “Hardness of equations over finite solvable groups under the exponential time hypothesis” by Armin Weiß has been accepted at ICALP 2020.

[Dec’19] The paper “An Automaton Group with PSPACE-Complete Word Problem” by Jan Philipp Wächter and Armin Weiß has been accepted at STACS 2020.

[Nov’19] Carlos Camino was awarded the stuvus Special Prize for exceptional commitment in teaching.

[Jun’19] The paper “The power word problem” by Markus Lohrey and Armin Weiß has been accepted at MFCS 2019.

[May’19] The paper “On the Average Case of MergeInsertion” by Florian Stober and Armin Weiß has been accepted at IWOCA 2019.

[Oct’18] The paper “Worst-Case Efficient Sorting with QuickMergesort” by Stefan Edelkamp and Armin Weiß has been accepted at ALENEX 2019.

[Jun’18] At CCC 2018, Lukas Fleischer received a Best Student Paper Award for his submission “On the Complexity of the Cayley Semigroup Membership Problem”.

[Jun’18] The paper “Testing Simon’s congruence” by Lukas Fleischer and Manfred Kufleitner was accepted at MFCS 2018.

[Jun’18] The paper “The Intersection Problem for Finite Semigroups” by Lukas Fleischer was accepted at DLT 2018.

[Apr’18] The paper “The isomorphism problem for finite extensions of free groups is in PSPACE” by Géraud Sénizergues and Armin Weiß was accepted at ICALP 2018.

[Apr’18] The paper “On the Complexity of the Cayley Semigroup Membership Problem” by Lukas Fleischer was accepted at CCC 2018.

[Jan’18] On March 24-29, 2019 Volker Diekert, Markus Lohrey, Olga Kharlampovich and Alexei Miasnikov will organize the Schloss Dagstuhl Seminar “Algorithmic Problems in Group Theory”.

[Dec’17] The paper “The Intersection Problem for Finite Monoids” by Lukas Fleischer and Manfred Kufleitner was accepted at STACS 2018.

[Jun’17] At the 12th International Computer Science Symposium in Russia (CSR), Lukas Fleischer and Manfred Kufleitner received a Best Paper Award for their publication “Green’s Relations in Finite Transformation Semigroups”, and Armin Weiss received a Best Paper Award for “The conjugacy problem in free solvable groups and wreath product of abelian groups is in $\text{TC}^0$ \text{TC}^0 “ which is joint work with Alexei Miasnikov and Svetla Vassileva.