Research Assistant

Phone |
+49-(0)711-685 88405 |

Fax |
+49-(0)711-685 88310 |

Office |
1.116 |

Address |
Universität Stuttgart, FMI Universitätsstr. 38 D-70569 Stuttgart Germany |

E-Mail |

## Links

Power Circuits in CRAG Implementierung der Power Circuit Datenstruktur zusammen mit Algorithmen für die Lösung des Wortproblems in der Baumslag und Higman Gruppe

CUJ2K JPEG2000 Encoder in CUDA

BlockQuicksort Code zu “BlockQuicksort: Avoiding Branch Mispredictions in Quicksort”

## Some selected Talks

*Hardness of equations over finite solvable groups under the exponential time hypothesis*, ICALP 2020, Saarbrücken/Online*On the isomorphism problem for virtually free groups*, North British Geometric Group Theory colloquium, Newcastle/Online 2020*The power word problem*, MFCS 2019, Aachen*The power word problem in free groups*, Schloss Dagstuhl Seminar “Algorithmic Problems in Group Theory”, 2019*Worst-Case Efficient Sorting with QuickMergesort*, ALENEX 2019, San Diego*The isomorphism problem for finite extensions of free groups is in PSPACE*, ICALP 2018, Prague*TC0 circuits for algorithmic problems in nilpotent groups*, MFCS 2017, Aalborg*The Conjugacy Problem in Free Solvable Groups and Wreath Products of Abelian Groups is in TC0*, CSR 2017, Kazan*TC0 computations and the subgroup membership problem in nilpotent groups*, Manhattan Algebra Day 2016*BlockQuicksort: Avoiding Branch Mispredictions in Quicksort*, ESA 2016, Aarhus*On the dimension of matrix embeddings of torsion-free nilpotent groups*, Edinburgh 2016*On the dimension of matrix embeddings of torsion-free nilpotent groups*, GAGTA 2016, Hoboken*Amenability of Schreier Graphs and Strongly Generic Algorithms for the Conjugacy Problem*, Manhattan Algebra Day 2015*Amenability of Schreier Graphs and Strongly Generic Algorithms for the Conjugacy Problem*, ISSAC 2015, Bath*Conjugacy in Baumslag-Solitar groups*, ALFA 2015, Bordeaux*QuickXsort: Efficient Sorting with n log n - 1.399n + o(n) Comparisons on Average*, CSR 2014, Moscow*Conjugacy in Baumslag’s group, generic case complexity, and division in power circuits*, LATIN 2014, Montevideo